Pascal Riedel, Reinhold von Schwerin, Daniel Schaudt, Alexander Hafner, Christian Späte
{"title":"ResNetFed:联合深度学习架构,用于从新冠肺炎胸部放射线照片中检测保密性肺炎。","authors":"Pascal Riedel, Reinhold von Schwerin, Daniel Schaudt, Alexander Hafner, Christian Späte","doi":"10.1007/s41666-023-00132-7","DOIUrl":null,"url":null,"abstract":"<p><p>Personal health data is subject to privacy regulations, making it challenging to apply centralized data-driven methods in healthcare, where personalized training data is frequently used. Federated Learning (FL) promises to provide a decentralized solution to this problem. In FL, siloed data is used for the model training to ensure data privacy. In this paper, we investigate the viability of the federated approach using the detection of COVID-19 pneumonia as a use case. 1411 individual chest radiographs, sourced from the public data repository COVIDx8 are used. The dataset contains radiographs of 753 normal lung findings and 658 COVID-19 related pneumonias. We partition the data unevenly across five separate data silos in order to reflect a typical FL scenario. For the binary image classification analysis of these radiographs, we propose <i>ResNetFed</i>, a pre-trained ResNet50 model modified for federation so that it supports <i>Differential Privacy</i>. In addition, we provide a customized FL strategy for the model training with COVID-19 radiographs. The experimental results show that ResNetFed clearly outperforms locally trained ResNet50 models. Due to the uneven distribution of the data in the silos, we observe that the locally trained ResNet50 models perform significantly worse than ResNetFed models (mean accuracies of 63% and 82.82%, respectively). In particular, ResNetFed shows excellent model performance in underpopulated data silos, achieving up to +34.9 percentage points higher accuracy compared to local ResNet50 models. Thus, with ResNetFed, we provide a federated solution that can assist the initial COVID-19 screening in medical centers in a privacy-preserving manner.</p>","PeriodicalId":36444,"journal":{"name":"Journal of Healthcare Informatics Research","volume":null,"pages":null},"PeriodicalIF":5.9000,"publicationDate":"2023-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10265567/pdf/","citationCount":"1","resultStr":"{\"title\":\"ResNetFed: Federated Deep Learning Architecture for Privacy-Preserving Pneumonia Detection from COVID-19 Chest Radiographs.\",\"authors\":\"Pascal Riedel, Reinhold von Schwerin, Daniel Schaudt, Alexander Hafner, Christian Späte\",\"doi\":\"10.1007/s41666-023-00132-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Personal health data is subject to privacy regulations, making it challenging to apply centralized data-driven methods in healthcare, where personalized training data is frequently used. Federated Learning (FL) promises to provide a decentralized solution to this problem. In FL, siloed data is used for the model training to ensure data privacy. In this paper, we investigate the viability of the federated approach using the detection of COVID-19 pneumonia as a use case. 1411 individual chest radiographs, sourced from the public data repository COVIDx8 are used. The dataset contains radiographs of 753 normal lung findings and 658 COVID-19 related pneumonias. We partition the data unevenly across five separate data silos in order to reflect a typical FL scenario. For the binary image classification analysis of these radiographs, we propose <i>ResNetFed</i>, a pre-trained ResNet50 model modified for federation so that it supports <i>Differential Privacy</i>. In addition, we provide a customized FL strategy for the model training with COVID-19 radiographs. The experimental results show that ResNetFed clearly outperforms locally trained ResNet50 models. Due to the uneven distribution of the data in the silos, we observe that the locally trained ResNet50 models perform significantly worse than ResNetFed models (mean accuracies of 63% and 82.82%, respectively). In particular, ResNetFed shows excellent model performance in underpopulated data silos, achieving up to +34.9 percentage points higher accuracy compared to local ResNet50 models. Thus, with ResNetFed, we provide a federated solution that can assist the initial COVID-19 screening in medical centers in a privacy-preserving manner.</p>\",\"PeriodicalId\":36444,\"journal\":{\"name\":\"Journal of Healthcare Informatics Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2023-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10265567/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Healthcare Informatics Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s41666-023-00132-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/6/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Healthcare Informatics Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s41666-023-00132-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
ResNetFed: Federated Deep Learning Architecture for Privacy-Preserving Pneumonia Detection from COVID-19 Chest Radiographs.
Personal health data is subject to privacy regulations, making it challenging to apply centralized data-driven methods in healthcare, where personalized training data is frequently used. Federated Learning (FL) promises to provide a decentralized solution to this problem. In FL, siloed data is used for the model training to ensure data privacy. In this paper, we investigate the viability of the federated approach using the detection of COVID-19 pneumonia as a use case. 1411 individual chest radiographs, sourced from the public data repository COVIDx8 are used. The dataset contains radiographs of 753 normal lung findings and 658 COVID-19 related pneumonias. We partition the data unevenly across five separate data silos in order to reflect a typical FL scenario. For the binary image classification analysis of these radiographs, we propose ResNetFed, a pre-trained ResNet50 model modified for federation so that it supports Differential Privacy. In addition, we provide a customized FL strategy for the model training with COVID-19 radiographs. The experimental results show that ResNetFed clearly outperforms locally trained ResNet50 models. Due to the uneven distribution of the data in the silos, we observe that the locally trained ResNet50 models perform significantly worse than ResNetFed models (mean accuracies of 63% and 82.82%, respectively). In particular, ResNetFed shows excellent model performance in underpopulated data silos, achieving up to +34.9 percentage points higher accuracy compared to local ResNet50 models. Thus, with ResNetFed, we provide a federated solution that can assist the initial COVID-19 screening in medical centers in a privacy-preserving manner.
期刊介绍:
Journal of Healthcare Informatics Research serves as a publication venue for the innovative technical contributions highlighting analytics, systems, and human factors research in healthcare informatics.Journal of Healthcare Informatics Research is concerned with the application of computer science principles, information science principles, information technology, and communication technology to address problems in healthcare, and everyday wellness. Journal of Healthcare Informatics Research highlights the most cutting-edge technical contributions in computing-oriented healthcare informatics. The journal covers three major tracks: (1) analytics—focuses on data analytics, knowledge discovery, predictive modeling; (2) systems—focuses on building healthcare informatics systems (e.g., architecture, framework, design, engineering, and application); (3) human factors—focuses on understanding users or context, interface design, health behavior, and user studies of healthcare informatics applications. Topics include but are not limited to: · healthcare software architecture, framework, design, and engineering;· electronic health records· medical data mining· predictive modeling· medical information retrieval· medical natural language processing· healthcare information systems· smart health and connected health· social media analytics· mobile healthcare· medical signal processing· human factors in healthcare· usability studies in healthcare· user-interface design for medical devices and healthcare software· health service delivery· health games· security and privacy in healthcare· medical recommender system· healthcare workflow management· disease profiling and personalized treatment· visualization of medical data· intelligent medical devices and sensors· RFID solutions for healthcare· healthcare decision analytics and support systems· epidemiological surveillance systems and intervention modeling· consumer and clinician health information needs, seeking, sharing, and use· semantic Web, linked data, and ontology· collaboration technologies for healthcare· assistive and adaptive ubiquitous computing technologies· statistics and quality of medical data· healthcare delivery in developing countries· health systems modeling and simulation· computer-aided diagnosis