Emma J. Chory , Meng Wang , Michele Ceribelli , Aleksandra M Michalowska , Stefan Golas , Erin Beck , Carleen Klumpp-Thomas , Lu Chen , Crystal McKnight , Zina Itkin , Kelli M. Wilson , David Holland , Sanjay Divakaran , James Bradner , Javed Khan , Berkley E. Gryder , Craig J. Thomas , Benjamin Z. Stanton
{"title":"高通量方法揭示白血病的协同药物组合","authors":"Emma J. Chory , Meng Wang , Michele Ceribelli , Aleksandra M Michalowska , Stefan Golas , Erin Beck , Carleen Klumpp-Thomas , Lu Chen , Crystal McKnight , Zina Itkin , Kelli M. Wilson , David Holland , Sanjay Divakaran , James Bradner , Javed Khan , Berkley E. Gryder , Craig J. Thomas , Benjamin Z. Stanton","doi":"10.1016/j.slasd.2023.04.004","DOIUrl":null,"url":null,"abstract":"<div><p>We report a comprehensive drug synergy study in acute myeloid leukemia (AML). In this work, we investigate a panel of cell lines spanning both MLL-rearranged and non-rearranged subtypes. The work comprises a resource for the community, with many synergistic drug combinations that could not have been predicted <em>a priori</em>, and open source code for automation and analyses<em>.</em> We base our definitions of drug synergy on the Chou-Talalay method, which is useful for visualizations of synergy experiments in isobolograms, and median-effects plots, among other representations. Our key findings include drug synergies affecting the chromatin state, specifically in the context of regulation of the modification state of histone H3 lysine-27. We report open source high throughput methodology such that multidimensional drug screening can be accomplished with equipment that is accessible to most laboratories. This study will enable preclinical investigation of new drug combinations in a lethal blood cancer, with data analysis and automation workflows freely available to the community.</p></div>","PeriodicalId":21764,"journal":{"name":"SLAS Discovery","volume":"28 4","pages":"Pages 193-201"},"PeriodicalIF":2.7000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10449086/pdf/","citationCount":"0","resultStr":"{\"title\":\"High-throughput approaches to uncover synergistic drug combinations in leukemia\",\"authors\":\"Emma J. Chory , Meng Wang , Michele Ceribelli , Aleksandra M Michalowska , Stefan Golas , Erin Beck , Carleen Klumpp-Thomas , Lu Chen , Crystal McKnight , Zina Itkin , Kelli M. Wilson , David Holland , Sanjay Divakaran , James Bradner , Javed Khan , Berkley E. Gryder , Craig J. Thomas , Benjamin Z. Stanton\",\"doi\":\"10.1016/j.slasd.2023.04.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We report a comprehensive drug synergy study in acute myeloid leukemia (AML). In this work, we investigate a panel of cell lines spanning both MLL-rearranged and non-rearranged subtypes. The work comprises a resource for the community, with many synergistic drug combinations that could not have been predicted <em>a priori</em>, and open source code for automation and analyses<em>.</em> We base our definitions of drug synergy on the Chou-Talalay method, which is useful for visualizations of synergy experiments in isobolograms, and median-effects plots, among other representations. Our key findings include drug synergies affecting the chromatin state, specifically in the context of regulation of the modification state of histone H3 lysine-27. We report open source high throughput methodology such that multidimensional drug screening can be accomplished with equipment that is accessible to most laboratories. This study will enable preclinical investigation of new drug combinations in a lethal blood cancer, with data analysis and automation workflows freely available to the community.</p></div>\",\"PeriodicalId\":21764,\"journal\":{\"name\":\"SLAS Discovery\",\"volume\":\"28 4\",\"pages\":\"Pages 193-201\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10449086/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SLAS Discovery\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2472555223000357\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SLAS Discovery","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2472555223000357","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
High-throughput approaches to uncover synergistic drug combinations in leukemia
We report a comprehensive drug synergy study in acute myeloid leukemia (AML). In this work, we investigate a panel of cell lines spanning both MLL-rearranged and non-rearranged subtypes. The work comprises a resource for the community, with many synergistic drug combinations that could not have been predicted a priori, and open source code for automation and analyses. We base our definitions of drug synergy on the Chou-Talalay method, which is useful for visualizations of synergy experiments in isobolograms, and median-effects plots, among other representations. Our key findings include drug synergies affecting the chromatin state, specifically in the context of regulation of the modification state of histone H3 lysine-27. We report open source high throughput methodology such that multidimensional drug screening can be accomplished with equipment that is accessible to most laboratories. This study will enable preclinical investigation of new drug combinations in a lethal blood cancer, with data analysis and automation workflows freely available to the community.
期刊介绍:
Advancing Life Sciences R&D: SLAS Discovery reports how scientists develop and utilize novel technologies and/or approaches to provide and characterize chemical and biological tools to understand and treat human disease.
SLAS Discovery is a peer-reviewed journal that publishes scientific reports that enable and improve target validation, evaluate current drug discovery technologies, provide novel research tools, and incorporate research approaches that enhance depth of knowledge and drug discovery success.
SLAS Discovery emphasizes scientific and technical advances in target identification/validation (including chemical probes, RNA silencing, gene editing technologies); biomarker discovery; assay development; virtual, medium- or high-throughput screening (biochemical and biological, biophysical, phenotypic, toxicological, ADME); lead generation/optimization; chemical biology; and informatics (data analysis, image analysis, statistics, bio- and chemo-informatics). Review articles on target biology, new paradigms in drug discovery and advances in drug discovery technologies.
SLAS Discovery is of particular interest to those involved in analytical chemistry, applied microbiology, automation, biochemistry, bioengineering, biomedical optics, biotechnology, bioinformatics, cell biology, DNA science and technology, genetics, information technology, medicinal chemistry, molecular biology, natural products chemistry, organic chemistry, pharmacology, spectroscopy, and toxicology.
SLAS Discovery is a member of the Committee on Publication Ethics (COPE) and was published previously (1996-2016) as the Journal of Biomolecular Screening (JBS).