Xianru Wang, Bin Liu, Xinsheng Zhang, Yufeng Liu, for the Alzheimer's Disease Neuroimaging Initiative
{"title":"高维广义线性模型的高效多变点检测","authors":"Xianru Wang, Bin Liu, Xinsheng Zhang, Yufeng Liu, for the Alzheimer's Disease Neuroimaging Initiative","doi":"10.1002/cjs.11721","DOIUrl":null,"url":null,"abstract":"<p>Change point detection for high-dimensional data is an important yet challenging problem for many applications. In this article, we consider multiple change point detection in the context of high-dimensional generalized linear models, allowing the covariate dimension <math>\n <mrow>\n <mi>p</mi>\n </mrow></math> to grow exponentially with the sample size <math>\n <mrow>\n <mi>n</mi>\n </mrow></math>. The model considered is general and flexible in the sense that it covers various specific models as special cases. It can automatically account for the underlying data generation mechanism without specifying any prior knowledge about the number of change points. Based on dynamic programming and binary segmentation techniques, two algorithms are proposed to detect multiple change points, allowing the number of change points to grow with <math>\n <mrow>\n <mi>n</mi>\n </mrow></math>. To further improve the computational efficiency, a more efficient algorithm designed for the case of a single change point is proposed. We present theoretical properties of our proposed algorithms, including estimation consistency for the number and locations of change points as well as consistency and asymptotic distributions for the underlying regression coefficients. Finally, extensive simulation studies and application to the Alzheimer's Disease Neuroimaging Initiative data further demonstrate the competitive performance of our proposed methods.</p>","PeriodicalId":55281,"journal":{"name":"Canadian Journal of Statistics-Revue Canadienne De Statistique","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2022-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cjs.11721","citationCount":"2","resultStr":"{\"title\":\"Efficient multiple change point detection for high-dimensional generalized linear models\",\"authors\":\"Xianru Wang, Bin Liu, Xinsheng Zhang, Yufeng Liu, for the Alzheimer's Disease Neuroimaging Initiative\",\"doi\":\"10.1002/cjs.11721\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Change point detection for high-dimensional data is an important yet challenging problem for many applications. In this article, we consider multiple change point detection in the context of high-dimensional generalized linear models, allowing the covariate dimension <math>\\n <mrow>\\n <mi>p</mi>\\n </mrow></math> to grow exponentially with the sample size <math>\\n <mrow>\\n <mi>n</mi>\\n </mrow></math>. The model considered is general and flexible in the sense that it covers various specific models as special cases. It can automatically account for the underlying data generation mechanism without specifying any prior knowledge about the number of change points. Based on dynamic programming and binary segmentation techniques, two algorithms are proposed to detect multiple change points, allowing the number of change points to grow with <math>\\n <mrow>\\n <mi>n</mi>\\n </mrow></math>. To further improve the computational efficiency, a more efficient algorithm designed for the case of a single change point is proposed. We present theoretical properties of our proposed algorithms, including estimation consistency for the number and locations of change points as well as consistency and asymptotic distributions for the underlying regression coefficients. Finally, extensive simulation studies and application to the Alzheimer's Disease Neuroimaging Initiative data further demonstrate the competitive performance of our proposed methods.</p>\",\"PeriodicalId\":55281,\"journal\":{\"name\":\"Canadian Journal of Statistics-Revue Canadienne De Statistique\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cjs.11721\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Journal of Statistics-Revue Canadienne De Statistique\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cjs.11721\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Statistics-Revue Canadienne De Statistique","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cjs.11721","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Efficient multiple change point detection for high-dimensional generalized linear models
Change point detection for high-dimensional data is an important yet challenging problem for many applications. In this article, we consider multiple change point detection in the context of high-dimensional generalized linear models, allowing the covariate dimension to grow exponentially with the sample size . The model considered is general and flexible in the sense that it covers various specific models as special cases. It can automatically account for the underlying data generation mechanism without specifying any prior knowledge about the number of change points. Based on dynamic programming and binary segmentation techniques, two algorithms are proposed to detect multiple change points, allowing the number of change points to grow with . To further improve the computational efficiency, a more efficient algorithm designed for the case of a single change point is proposed. We present theoretical properties of our proposed algorithms, including estimation consistency for the number and locations of change points as well as consistency and asymptotic distributions for the underlying regression coefficients. Finally, extensive simulation studies and application to the Alzheimer's Disease Neuroimaging Initiative data further demonstrate the competitive performance of our proposed methods.
期刊介绍:
The Canadian Journal of Statistics is the official journal of the Statistical Society of Canada. It has a reputation internationally as an excellent journal. The editorial board is comprised of statistical scientists with applied, computational, methodological, theoretical and probabilistic interests. Their role is to ensure that the journal continues to provide an international forum for the discipline of Statistics.
The journal seeks papers making broad points of interest to many readers, whereas papers making important points of more specific interest are better placed in more specialized journals. The levels of innovation and impact are key in the evaluation of submitted manuscripts.