Yaping Zhang, Samuel M Ehrlich, Cheng Zhu, Xiaoping Du
{"title":"血小板糖蛋白Ib-IX复合物的信号传导机制。","authors":"Yaping Zhang, Samuel M Ehrlich, Cheng Zhu, Xiaoping Du","doi":"10.1080/09537104.2022.2071852","DOIUrl":null,"url":null,"abstract":"<p><p>The glycoprotein Ib-IX (GPIb-IX) complex mediates initial platelet adhesion to von Willebrand factor (VWF) immobilized on subendothelial matrix and endothelial surfaces, and transmits VWF binding-induced signals to stimulate platelet activation. GPIb-IX also functions as part of a mechanosensor to convert mechanical force received via VWF binding into intracellular signals, thereby greatly enhancing platelet activation. Thrombin binding to GPIb-IX initiates GPIb-IX signaling cooperatively with protease-activated receptors to synergistically stimulate the platelet response to low-dose thrombin. GPIb-IX signaling may also occur following the binding of other GPIb-IX ligands such as leukocyte integrin α<sub>M</sub>β<sub>2</sub> and red cell-derived semaphorin 7A, contributing to thrombo-inflammation. GPIb-IX signaling requires the interaction between the cytoplasmic domains of GPIb-IX and 14-3-3 protein and is mediated through Src family kinases, the Rho family of small GTPases, phosphoinositide 3-kinase-Akt-cGMP-mitogen-activated protein kinase, and LIM kinase 1 signaling pathways, leading to calcium mobilization, integrin activation, and granule secretion. This review summarizes the current understanding of GPIb-IX signaling.</p>","PeriodicalId":20268,"journal":{"name":"Platelets","volume":"33 6","pages":"823-832"},"PeriodicalIF":2.5000,"publicationDate":"2022-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9378482/pdf/nihms-1806984.pdf","citationCount":"3","resultStr":"{\"title\":\"Signaling mechanisms of the platelet glycoprotein Ib-IX complex.\",\"authors\":\"Yaping Zhang, Samuel M Ehrlich, Cheng Zhu, Xiaoping Du\",\"doi\":\"10.1080/09537104.2022.2071852\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The glycoprotein Ib-IX (GPIb-IX) complex mediates initial platelet adhesion to von Willebrand factor (VWF) immobilized on subendothelial matrix and endothelial surfaces, and transmits VWF binding-induced signals to stimulate platelet activation. GPIb-IX also functions as part of a mechanosensor to convert mechanical force received via VWF binding into intracellular signals, thereby greatly enhancing platelet activation. Thrombin binding to GPIb-IX initiates GPIb-IX signaling cooperatively with protease-activated receptors to synergistically stimulate the platelet response to low-dose thrombin. GPIb-IX signaling may also occur following the binding of other GPIb-IX ligands such as leukocyte integrin α<sub>M</sub>β<sub>2</sub> and red cell-derived semaphorin 7A, contributing to thrombo-inflammation. GPIb-IX signaling requires the interaction between the cytoplasmic domains of GPIb-IX and 14-3-3 protein and is mediated through Src family kinases, the Rho family of small GTPases, phosphoinositide 3-kinase-Akt-cGMP-mitogen-activated protein kinase, and LIM kinase 1 signaling pathways, leading to calcium mobilization, integrin activation, and granule secretion. This review summarizes the current understanding of GPIb-IX signaling.</p>\",\"PeriodicalId\":20268,\"journal\":{\"name\":\"Platelets\",\"volume\":\"33 6\",\"pages\":\"823-832\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2022-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9378482/pdf/nihms-1806984.pdf\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Platelets\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/09537104.2022.2071852\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Platelets","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/09537104.2022.2071852","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Signaling mechanisms of the platelet glycoprotein Ib-IX complex.
The glycoprotein Ib-IX (GPIb-IX) complex mediates initial platelet adhesion to von Willebrand factor (VWF) immobilized on subendothelial matrix and endothelial surfaces, and transmits VWF binding-induced signals to stimulate platelet activation. GPIb-IX also functions as part of a mechanosensor to convert mechanical force received via VWF binding into intracellular signals, thereby greatly enhancing platelet activation. Thrombin binding to GPIb-IX initiates GPIb-IX signaling cooperatively with protease-activated receptors to synergistically stimulate the platelet response to low-dose thrombin. GPIb-IX signaling may also occur following the binding of other GPIb-IX ligands such as leukocyte integrin αMβ2 and red cell-derived semaphorin 7A, contributing to thrombo-inflammation. GPIb-IX signaling requires the interaction between the cytoplasmic domains of GPIb-IX and 14-3-3 protein and is mediated through Src family kinases, the Rho family of small GTPases, phosphoinositide 3-kinase-Akt-cGMP-mitogen-activated protein kinase, and LIM kinase 1 signaling pathways, leading to calcium mobilization, integrin activation, and granule secretion. This review summarizes the current understanding of GPIb-IX signaling.
期刊介绍:
Platelets is an international, peer-reviewed journal covering all aspects of platelet- and megakaryocyte-related research.
Platelets provides the opportunity for contributors and readers across scientific disciplines to engage with new information about blood platelets. The journal’s Methods section aims to improve standardization between laboratories and to help researchers replicate difficult methods.
Research areas include:
Platelet function
Biochemistry
Signal transduction
Pharmacology and therapeutics
Interaction with other cells in the blood vessel wall
The contribution of platelets and platelet-derived products to health and disease
The journal publishes original articles, fast-track articles, review articles, systematic reviews, methods papers, short communications, case reports, opinion articles, commentaries, gene of the issue, and letters to the editor.
Platelets operates a single-blind peer review policy. Authors can choose to publish gold open access in this journal.