利用 STREAMLINE 探索通过多模态脑成像进行认知结果预测的自动化机器学习。

Xinkai Wang, Yanbo Feng, Boning Tong, Jingxuan Bao, Marylyn D Ritchie, Andrew J Saykin, Jason H Moore, Ryan Urbanowicz, Li Shen
{"title":"利用 STREAMLINE 探索通过多模态脑成像进行认知结果预测的自动化机器学习。","authors":"Xinkai Wang, Yanbo Feng, Boning Tong, Jingxuan Bao, Marylyn D Ritchie, Andrew J Saykin, Jason H Moore, Ryan Urbanowicz, Li Shen","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>STREAMLINE is a simple, transparent, end-to-end automated machine learning (AutoML) pipeline for easily conducting rigorous machine learning (ML) modeling and analysis. The initial version is limited to binary classification. In this work, we extend STREAMLINE through implementing multiple regression-based ML models, including linear regression, elastic net, group lasso, and L21 norm. We demonstrate the effectiveness of the regression version of STREAMLINE by applying it to the prediction of Alzheimer's disease (AD) cognitive outcomes using multimodal brain imaging data. Our empirical results demonstrate the feasibility and effectiveness of the newly expanded STREAMLINE as an AutoML pipeline for evaluating AD regression models, and for discovering multimodal imaging biomarkers.</p>","PeriodicalId":72181,"journal":{"name":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10283099/pdf/2390.pdf","citationCount":"0","resultStr":"{\"title\":\"Exploring Automated Machine Learning for Cognitive Outcome Prediction from Multimodal Brain Imaging using STREAMLINE.\",\"authors\":\"Xinkai Wang, Yanbo Feng, Boning Tong, Jingxuan Bao, Marylyn D Ritchie, Andrew J Saykin, Jason H Moore, Ryan Urbanowicz, Li Shen\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>STREAMLINE is a simple, transparent, end-to-end automated machine learning (AutoML) pipeline for easily conducting rigorous machine learning (ML) modeling and analysis. The initial version is limited to binary classification. In this work, we extend STREAMLINE through implementing multiple regression-based ML models, including linear regression, elastic net, group lasso, and L21 norm. We demonstrate the effectiveness of the regression version of STREAMLINE by applying it to the prediction of Alzheimer's disease (AD) cognitive outcomes using multimodal brain imaging data. Our empirical results demonstrate the feasibility and effectiveness of the newly expanded STREAMLINE as an AutoML pipeline for evaluating AD regression models, and for discovering multimodal imaging biomarkers.</p>\",\"PeriodicalId\":72181,\"journal\":{\"name\":\"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10283099/pdf/2390.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

STREAMLINE 是一个简单、透明、端到端的自动机器学习(AutoML)管道,可轻松进行严格的机器学习(ML)建模和分析。最初的版本仅限于二元分类。在这项工作中,我们扩展了 STREAMLINE,实现了多种基于回归的 ML 模型,包括线性回归、弹性网、组套索和 L21 准则。我们将 STREAMLINE 的回归版本应用于使用多模态脑成像数据预测阿尔茨海默病(AD)的认知结果,从而证明了它的有效性。我们的实证结果证明了新扩展的 STREAMLINE 作为评估 AD 回归模型和发现多模态成像生物标记物的 AutoML 管道的可行性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring Automated Machine Learning for Cognitive Outcome Prediction from Multimodal Brain Imaging using STREAMLINE.

STREAMLINE is a simple, transparent, end-to-end automated machine learning (AutoML) pipeline for easily conducting rigorous machine learning (ML) modeling and analysis. The initial version is limited to binary classification. In this work, we extend STREAMLINE through implementing multiple regression-based ML models, including linear regression, elastic net, group lasso, and L21 norm. We demonstrate the effectiveness of the regression version of STREAMLINE by applying it to the prediction of Alzheimer's disease (AD) cognitive outcomes using multimodal brain imaging data. Our empirical results demonstrate the feasibility and effectiveness of the newly expanded STREAMLINE as an AutoML pipeline for evaluating AD regression models, and for discovering multimodal imaging biomarkers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信