Can Sheng, Xu Chu, Yan He, Qingqing Ding, Shulei Jia, Qiguang Shi, Ran Sun, Li Song, Wenying Du, Yuan Liang, Nian Chen, Yan Yang, Xiaoni Wang
{"title":"外周代谢物的改变是阿尔茨海默病的关键因素。","authors":"Can Sheng, Xu Chu, Yan He, Qingqing Ding, Shulei Jia, Qiguang Shi, Ran Sun, Li Song, Wenying Du, Yuan Liang, Nian Chen, Yan Yang, Xiaoni Wang","doi":"10.2174/1567205020666230825091147","DOIUrl":null,"url":null,"abstract":"<p><p>Growing evidence supports that Alzheimer's disease (AD) could be regarded as a metabolic disease, accompanying central and peripheral metabolic disturbance. Nowadays, exploring novel and potentially alternative hallmarks for AD is needed. Peripheral metabolites based on blood and gut may provide new biochemical insights about disease mechanisms. These metabolites can influence brain energy homeostasis, maintain gut mucosal integrity, and regulate the host immune system, which may further play a key role in modulating the cognitive function and behavior of AD. Recently, metabolomics has been used to identify key AD-related metabolic changes and define metabolic changes during AD disease trajectory. This review aims to summarize the key blood- and microbial-derived metabolites that are altered in AD and identify the potential metabolic biomarkers of AD, which will provide future targets for precision therapeutic modulation.</p>","PeriodicalId":10810,"journal":{"name":"Current Alzheimer research","volume":" ","pages":"379-393"},"PeriodicalIF":1.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Alterations in Peripheral Metabolites as Key Actors in Alzheimer's Disease.\",\"authors\":\"Can Sheng, Xu Chu, Yan He, Qingqing Ding, Shulei Jia, Qiguang Shi, Ran Sun, Li Song, Wenying Du, Yuan Liang, Nian Chen, Yan Yang, Xiaoni Wang\",\"doi\":\"10.2174/1567205020666230825091147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Growing evidence supports that Alzheimer's disease (AD) could be regarded as a metabolic disease, accompanying central and peripheral metabolic disturbance. Nowadays, exploring novel and potentially alternative hallmarks for AD is needed. Peripheral metabolites based on blood and gut may provide new biochemical insights about disease mechanisms. These metabolites can influence brain energy homeostasis, maintain gut mucosal integrity, and regulate the host immune system, which may further play a key role in modulating the cognitive function and behavior of AD. Recently, metabolomics has been used to identify key AD-related metabolic changes and define metabolic changes during AD disease trajectory. This review aims to summarize the key blood- and microbial-derived metabolites that are altered in AD and identify the potential metabolic biomarkers of AD, which will provide future targets for precision therapeutic modulation.</p>\",\"PeriodicalId\":10810,\"journal\":{\"name\":\"Current Alzheimer research\",\"volume\":\" \",\"pages\":\"379-393\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Alzheimer research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/1567205020666230825091147\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Alzheimer research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/1567205020666230825091147","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Alterations in Peripheral Metabolites as Key Actors in Alzheimer's Disease.
Growing evidence supports that Alzheimer's disease (AD) could be regarded as a metabolic disease, accompanying central and peripheral metabolic disturbance. Nowadays, exploring novel and potentially alternative hallmarks for AD is needed. Peripheral metabolites based on blood and gut may provide new biochemical insights about disease mechanisms. These metabolites can influence brain energy homeostasis, maintain gut mucosal integrity, and regulate the host immune system, which may further play a key role in modulating the cognitive function and behavior of AD. Recently, metabolomics has been used to identify key AD-related metabolic changes and define metabolic changes during AD disease trajectory. This review aims to summarize the key blood- and microbial-derived metabolites that are altered in AD and identify the potential metabolic biomarkers of AD, which will provide future targets for precision therapeutic modulation.
期刊介绍:
Current Alzheimer Research publishes peer-reviewed frontier review, research, drug clinical trial studies and letter articles on all areas of Alzheimer’s disease. This multidisciplinary journal will help in understanding the neurobiology, genetics, pathogenesis, and treatment strategies of Alzheimer’s disease. The journal publishes objective reviews written by experts and leaders actively engaged in research using cellular, molecular, and animal models. The journal also covers original articles on recent research in fast emerging areas of molecular diagnostics, brain imaging, drug development and discovery, and clinical aspects of Alzheimer’s disease. Manuscripts are encouraged that relate to the synergistic mechanism of Alzheimer''s disease with other dementia and neurodegenerative disorders. Book reviews, meeting reports and letters-to-the-editor are also published. The journal is essential reading for researchers, educators and physicians with interest in age-related dementia and Alzheimer’s disease. Current Alzheimer Research provides a comprehensive ''bird''s-eye view'' of the current state of Alzheimer''s research for neuroscientists, clinicians, health science planners, granting, caregivers and families of this devastating disease.