Christian Matek, Carsten Marr, Michael von Bergwelt-Baildon, Karsten Spiekermann
{"title":"[用于计算机辅助白血病诊断的人工智能]。","authors":"Christian Matek, Carsten Marr, Michael von Bergwelt-Baildon, Karsten Spiekermann","doi":"10.1055/a-1965-7044","DOIUrl":null,"url":null,"abstract":"<p><p>The manual examination of blood and bone marrow specimens for leukemia patients is time-consuming and limited by intra- and inter-observer variance. The development of AI algorithms for leukemia diagnostics requires high-quality sample digitization and reliable annotation of large datasets. Deep learning-based algorithms using these datasets attain human-level performance for some well-defined, clinically relevant questions such as the blast character of cells. Methods such as multiple - instance - learning allow predicting diagnoses from a collection of leukocytes, but are more data-intensive. Using \"explainable AI\" methods can make the prediction process more transparent and allow users to verify the algorithm's predictions. Stability and robustness analyses are necessary for routine application of these algorithms, and regulatory institutions are developing standards for this purpose. Integrated diagnostics, which link different diagnostic modalities, offer the promise of even greater accuracy but require more extensive and diverse datasets.</p>","PeriodicalId":11370,"journal":{"name":"Deutsche Medizinische Wochenschrift","volume":"148 17","pages":"1108-1112"},"PeriodicalIF":0.6000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[Artificial Intelligence for computer-aided leukemia diagnostics].\",\"authors\":\"Christian Matek, Carsten Marr, Michael von Bergwelt-Baildon, Karsten Spiekermann\",\"doi\":\"10.1055/a-1965-7044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The manual examination of blood and bone marrow specimens for leukemia patients is time-consuming and limited by intra- and inter-observer variance. The development of AI algorithms for leukemia diagnostics requires high-quality sample digitization and reliable annotation of large datasets. Deep learning-based algorithms using these datasets attain human-level performance for some well-defined, clinically relevant questions such as the blast character of cells. Methods such as multiple - instance - learning allow predicting diagnoses from a collection of leukocytes, but are more data-intensive. Using \\\"explainable AI\\\" methods can make the prediction process more transparent and allow users to verify the algorithm's predictions. Stability and robustness analyses are necessary for routine application of these algorithms, and regulatory institutions are developing standards for this purpose. Integrated diagnostics, which link different diagnostic modalities, offer the promise of even greater accuracy but require more extensive and diverse datasets.</p>\",\"PeriodicalId\":11370,\"journal\":{\"name\":\"Deutsche Medizinische Wochenschrift\",\"volume\":\"148 17\",\"pages\":\"1108-1112\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Deutsche Medizinische Wochenschrift\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1055/a-1965-7044\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/8/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"MEDICINE, GENERAL & INTERNAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Deutsche Medizinische Wochenschrift","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1055/a-1965-7044","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/23 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
[Artificial Intelligence for computer-aided leukemia diagnostics].
The manual examination of blood and bone marrow specimens for leukemia patients is time-consuming and limited by intra- and inter-observer variance. The development of AI algorithms for leukemia diagnostics requires high-quality sample digitization and reliable annotation of large datasets. Deep learning-based algorithms using these datasets attain human-level performance for some well-defined, clinically relevant questions such as the blast character of cells. Methods such as multiple - instance - learning allow predicting diagnoses from a collection of leukocytes, but are more data-intensive. Using "explainable AI" methods can make the prediction process more transparent and allow users to verify the algorithm's predictions. Stability and robustness analyses are necessary for routine application of these algorithms, and regulatory institutions are developing standards for this purpose. Integrated diagnostics, which link different diagnostic modalities, offer the promise of even greater accuracy but require more extensive and diverse datasets.
期刊介绍:
Ein Schwerpunktthema - verschiedene Perspektiven
Mit vielen praktischen Tipps und konkreten Handlungsanweisungen.
Kurz und prägnant: Aktuell informiert
Interessante Nachrichten für Sie zusammengefasst und von Experten kommentiert.
Fundiertes Fachwissen - für Einsteiger und Profis
Ein bunter Mix aus Übersichten, Fallbeispielen, Kasuistiken und Schritt-für-Schritt-Anleitungen.
Blick über den Tellerrand
Erweitern Sie Ihren Fokus über das reine Fachwissen hinaus mit "Medizin im Kontext".