Serene W H Wong, Chiara Pastrello, Max Kotlyar, Christos Faloutsos, Igor Jurisica
{"title":"USNAP:快速独特致密区域检测及其在肺癌中的应用。","authors":"Serene W H Wong, Chiara Pastrello, Max Kotlyar, Christos Faloutsos, Igor Jurisica","doi":"10.1093/bioinformatics/btad477","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Many real-world problems can be modeled as annotated graphs. Scalable graph algorithms that extract actionable information from such data are in demand since these graphs are large, varying in topology, and have diverse node/edge annotations. When these graphs change over time they create dynamic graphs, and open the possibility to find patterns across different time points. In this article, we introduce a scalable algorithm that finds unique dense regions across time points in dynamic graphs. Such algorithms have applications in many different areas, including the biological, financial, and social domains.</p><p><strong>Results: </strong>There are three important contributions to this manuscript. First, we designed a scalable algorithm, USNAP, to effectively identify dense subgraphs that are unique to a time stamp given a dynamic graph. Importantly, USNAP provides a lower bound of the density measure in each step of the greedy algorithm. Second, insights and understanding obtained from validating USNAP on real data show its effectiveness. While USNAP is domain independent, we applied it to four non-small cell lung cancer gene expression datasets. Stages in non-small cell lung cancer were modeled as dynamic graphs, and input to USNAP. Pathway enrichment analyses and comprehensive interpretations from literature show that USNAP identified biologically relevant mechanisms for different stages of cancer progression. Third, USNAP is scalable, and has a time complexity of O(m+mc log nc+nc log nc), where m is the number of edges, and n is the number of vertices in the dynamic graph; mc is the number of edges, and nc is the number of vertices in the collapsed graph.</p><p><strong>Availability and implementation: </strong>The code of USNAP is available at https://www.cs.utoronto.ca/~juris/data/USNAP22.</p>","PeriodicalId":8903,"journal":{"name":"Bioinformatics","volume":"39 8","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10425186/pdf/","citationCount":"0","resultStr":"{\"title\":\"USNAP: fast unique dense region detection and its application to lung cancer.\",\"authors\":\"Serene W H Wong, Chiara Pastrello, Max Kotlyar, Christos Faloutsos, Igor Jurisica\",\"doi\":\"10.1093/bioinformatics/btad477\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Motivation: </strong>Many real-world problems can be modeled as annotated graphs. Scalable graph algorithms that extract actionable information from such data are in demand since these graphs are large, varying in topology, and have diverse node/edge annotations. When these graphs change over time they create dynamic graphs, and open the possibility to find patterns across different time points. In this article, we introduce a scalable algorithm that finds unique dense regions across time points in dynamic graphs. Such algorithms have applications in many different areas, including the biological, financial, and social domains.</p><p><strong>Results: </strong>There are three important contributions to this manuscript. First, we designed a scalable algorithm, USNAP, to effectively identify dense subgraphs that are unique to a time stamp given a dynamic graph. Importantly, USNAP provides a lower bound of the density measure in each step of the greedy algorithm. Second, insights and understanding obtained from validating USNAP on real data show its effectiveness. While USNAP is domain independent, we applied it to four non-small cell lung cancer gene expression datasets. Stages in non-small cell lung cancer were modeled as dynamic graphs, and input to USNAP. Pathway enrichment analyses and comprehensive interpretations from literature show that USNAP identified biologically relevant mechanisms for different stages of cancer progression. Third, USNAP is scalable, and has a time complexity of O(m+mc log nc+nc log nc), where m is the number of edges, and n is the number of vertices in the dynamic graph; mc is the number of edges, and nc is the number of vertices in the collapsed graph.</p><p><strong>Availability and implementation: </strong>The code of USNAP is available at https://www.cs.utoronto.ca/~juris/data/USNAP22.</p>\",\"PeriodicalId\":8903,\"journal\":{\"name\":\"Bioinformatics\",\"volume\":\"39 8\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10425186/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bioinformatics/btad477\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btad477","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
USNAP: fast unique dense region detection and its application to lung cancer.
Motivation: Many real-world problems can be modeled as annotated graphs. Scalable graph algorithms that extract actionable information from such data are in demand since these graphs are large, varying in topology, and have diverse node/edge annotations. When these graphs change over time they create dynamic graphs, and open the possibility to find patterns across different time points. In this article, we introduce a scalable algorithm that finds unique dense regions across time points in dynamic graphs. Such algorithms have applications in many different areas, including the biological, financial, and social domains.
Results: There are three important contributions to this manuscript. First, we designed a scalable algorithm, USNAP, to effectively identify dense subgraphs that are unique to a time stamp given a dynamic graph. Importantly, USNAP provides a lower bound of the density measure in each step of the greedy algorithm. Second, insights and understanding obtained from validating USNAP on real data show its effectiveness. While USNAP is domain independent, we applied it to four non-small cell lung cancer gene expression datasets. Stages in non-small cell lung cancer were modeled as dynamic graphs, and input to USNAP. Pathway enrichment analyses and comprehensive interpretations from literature show that USNAP identified biologically relevant mechanisms for different stages of cancer progression. Third, USNAP is scalable, and has a time complexity of O(m+mc log nc+nc log nc), where m is the number of edges, and n is the number of vertices in the dynamic graph; mc is the number of edges, and nc is the number of vertices in the collapsed graph.
Availability and implementation: The code of USNAP is available at https://www.cs.utoronto.ca/~juris/data/USNAP22.
期刊介绍:
The leading journal in its field, Bioinformatics publishes the highest quality scientific papers and review articles of interest to academic and industrial researchers. Its main focus is on new developments in genome bioinformatics and computational biology. Two distinct sections within the journal - Discovery Notes and Application Notes- focus on shorter papers; the former reporting biologically interesting discoveries using computational methods, the latter exploring the applications used for experiments.