{"title":"强基两个群。","authors":"Timothy C Burness, Robert M Guralnick","doi":"10.1007/s10013-023-00628-0","DOIUrl":null,"url":null,"abstract":"<p><p>Let <i>G</i> be a finite group, let <i>H</i> be a core-free subgroup and let <i>b</i>(<i>G</i>, <i>H</i>) denote the base size for the action of <i>G</i> on <i>G</i>/<i>H</i>. Let <math><mrow><mi>α</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></math> be the number of conjugacy classes of core-free subgroups <i>H</i> of <i>G</i> with <math><mrow><mi>b</mi><mo>(</mo><mi>G</mi><mo>,</mo><mi>H</mi><mo>)</mo><mo>≥</mo><mn>3</mn></mrow></math>. We say that <i>G</i> is a strongly base-two group if <math><mrow><mi>α</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mn>1</mn></mrow></math>, which means that almost every faithful transitive permutation representation of <i>G</i> has base size 2. In this paper, we study the strongly base-two finite groups with trivial Frattini subgroup.</p>","PeriodicalId":45919,"journal":{"name":"Vietnam Journal of Mathematics","volume":"51 3","pages":"657-683"},"PeriodicalIF":0.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10444712/pdf/","citationCount":"0","resultStr":"{\"title\":\"Strongly Base-Two Groups.\",\"authors\":\"Timothy C Burness, Robert M Guralnick\",\"doi\":\"10.1007/s10013-023-00628-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Let <i>G</i> be a finite group, let <i>H</i> be a core-free subgroup and let <i>b</i>(<i>G</i>, <i>H</i>) denote the base size for the action of <i>G</i> on <i>G</i>/<i>H</i>. Let <math><mrow><mi>α</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></math> be the number of conjugacy classes of core-free subgroups <i>H</i> of <i>G</i> with <math><mrow><mi>b</mi><mo>(</mo><mi>G</mi><mo>,</mo><mi>H</mi><mo>)</mo><mo>≥</mo><mn>3</mn></mrow></math>. We say that <i>G</i> is a strongly base-two group if <math><mrow><mi>α</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mn>1</mn></mrow></math>, which means that almost every faithful transitive permutation representation of <i>G</i> has base size 2. In this paper, we study the strongly base-two finite groups with trivial Frattini subgroup.</p>\",\"PeriodicalId\":45919,\"journal\":{\"name\":\"Vietnam Journal of Mathematics\",\"volume\":\"51 3\",\"pages\":\"657-683\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10444712/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vietnam Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10013-023-00628-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/5/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vietnam Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10013-023-00628-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/5/10 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Let G be a finite group, let H be a core-free subgroup and let b(G, H) denote the base size for the action of G on G/H. Let be the number of conjugacy classes of core-free subgroups H of G with . We say that G is a strongly base-two group if , which means that almost every faithful transitive permutation representation of G has base size 2. In this paper, we study the strongly base-two finite groups with trivial Frattini subgroup.
期刊介绍:
Vietnam Journal of Mathematics was originally founded in 1973 by the Vietnam Academy of Science and Technology and the Vietnam Mathematical Society. Published by Springer from 1997 to 2005 and since 2013, this quarterly journal is open to contributions from researchers from all over the world, where all submitted articles are peer-reviewed by experts worldwide. It aims to publish high-quality original research papers and review articles in all active areas of pure and applied mathematics.