Danial Hashemi Karoii, Hossein Azizi, Thomas Skutella
{"title":"非梗阻性无精子症不孕患者睾丸中G蛋白转导蛋白基因表达的改变。","authors":"Danial Hashemi Karoii, Hossein Azizi, Thomas Skutella","doi":"10.1089/dna.2023.0189","DOIUrl":null,"url":null,"abstract":"<p><p>Recent studies have shown that several members of the G-protein-coupled receptors (GPCR) superfamily play crucial roles in the maintenance of ion-water homeostasis of the sperm and Sertoli cells, development of the germ cells, formation of the blood barrier, and maturation of sperm. The GPCR, guanyl-nucleotide exchange factor, membrane traffic protein, and small GTPase genes were analyzed by microarray and bioinformatics (3513 sperm and Sertoli cell genes). In the microarray analyses of three human cases with different nonobstructive azoospermia sperm, the expression of <i>GOLGA8IP</i>, <i>OR2AT4</i>, <i>PHKA1</i>, <i>A2M, OR56A1</i>, <i>SEMA3G</i>, <i>LRRC17</i>, <i>APP</i>, <i>ARHGAP33</i>, <i>RABGEF1</i>, <i>NPY2R</i>, <i>GHRHR</i>, <i>LTB4R2</i>, <i>GRIK5</i>, <i>OR6K6</i>, <i>NAPG</i>, <i>OR6C65</i>, <i>VPS35</i>, <i>FPR3</i>, and <i>ARL4A</i> was upregulated, while expression of <i>MARS</i>, <i>SIRPG</i>, <i>OGFR</i>, <i>GPR150</i>, <i>LRRK1</i>, and <i>NGEF</i> was downregulated. There was an increase in <i>GBP3</i>, <i>GBP3</i>, <i>TNF</i>, <i>TGFB3</i>, and <i>CLTC</i> expression in the Sertoli cells of three human cases with NOA, whereas expression of <i>PAQR4</i>, <i>RRAGD</i>, <i>RAC2</i>, <i>SERPINB8</i>, <i>IRPB1</i>, <i>MRGPRF</i>, <i>RASA2</i>, <i>SIRPG</i>, <i>RGS2</i>, <i>RAP2A</i>, <i>RAB2B</i>, <i>ARL17</i>, <i>SERINC4</i>, <i>XIAP</i>, <i>DENND4C</i>, <i>ANKRA2</i>, <i>CSTA</i>, <i>STX18</i>, and <i>SNAP23</i> were downregulated. A combined analysis of Enrich Shiny Gene Ontology (GO), STRING, and Cytoscape was used to predict proteins' molecular interactions and then to recognize master pathways. Functional enrichment analysis showed that the biological process (BP), regulation of protein metabolic process, regulation of small GTPase-mediated signal transduction were significantly expressed in up-/downregulated differentially expressed genes (DEGs) in sperm. In molecular function (MF) experiments of DEGs that were up-/downregulated, it was found that GPCR activity, guanyl ribonucleotide binding, GTPase activity and nucleoside-triphosphatase activity were overexpressed. An analysis of GO enrichment findings of Sertoli cells showed BP and MF to be common DEGs. When these gene mutations have been validated, they can be used to create new GPCR antagonists or agonists that are receptor-selective.</p>","PeriodicalId":11248,"journal":{"name":"DNA and cell biology","volume":" ","pages":"617-637"},"PeriodicalIF":2.6000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Altered G-Protein Transduction Protein Gene Expression in the Testis of Infertile Patients with Nonobstructive Azoospermia.\",\"authors\":\"Danial Hashemi Karoii, Hossein Azizi, Thomas Skutella\",\"doi\":\"10.1089/dna.2023.0189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recent studies have shown that several members of the G-protein-coupled receptors (GPCR) superfamily play crucial roles in the maintenance of ion-water homeostasis of the sperm and Sertoli cells, development of the germ cells, formation of the blood barrier, and maturation of sperm. The GPCR, guanyl-nucleotide exchange factor, membrane traffic protein, and small GTPase genes were analyzed by microarray and bioinformatics (3513 sperm and Sertoli cell genes). In the microarray analyses of three human cases with different nonobstructive azoospermia sperm, the expression of <i>GOLGA8IP</i>, <i>OR2AT4</i>, <i>PHKA1</i>, <i>A2M, OR56A1</i>, <i>SEMA3G</i>, <i>LRRC17</i>, <i>APP</i>, <i>ARHGAP33</i>, <i>RABGEF1</i>, <i>NPY2R</i>, <i>GHRHR</i>, <i>LTB4R2</i>, <i>GRIK5</i>, <i>OR6K6</i>, <i>NAPG</i>, <i>OR6C65</i>, <i>VPS35</i>, <i>FPR3</i>, and <i>ARL4A</i> was upregulated, while expression of <i>MARS</i>, <i>SIRPG</i>, <i>OGFR</i>, <i>GPR150</i>, <i>LRRK1</i>, and <i>NGEF</i> was downregulated. There was an increase in <i>GBP3</i>, <i>GBP3</i>, <i>TNF</i>, <i>TGFB3</i>, and <i>CLTC</i> expression in the Sertoli cells of three human cases with NOA, whereas expression of <i>PAQR4</i>, <i>RRAGD</i>, <i>RAC2</i>, <i>SERPINB8</i>, <i>IRPB1</i>, <i>MRGPRF</i>, <i>RASA2</i>, <i>SIRPG</i>, <i>RGS2</i>, <i>RAP2A</i>, <i>RAB2B</i>, <i>ARL17</i>, <i>SERINC4</i>, <i>XIAP</i>, <i>DENND4C</i>, <i>ANKRA2</i>, <i>CSTA</i>, <i>STX18</i>, and <i>SNAP23</i> were downregulated. A combined analysis of Enrich Shiny Gene Ontology (GO), STRING, and Cytoscape was used to predict proteins' molecular interactions and then to recognize master pathways. Functional enrichment analysis showed that the biological process (BP), regulation of protein metabolic process, regulation of small GTPase-mediated signal transduction were significantly expressed in up-/downregulated differentially expressed genes (DEGs) in sperm. In molecular function (MF) experiments of DEGs that were up-/downregulated, it was found that GPCR activity, guanyl ribonucleotide binding, GTPase activity and nucleoside-triphosphatase activity were overexpressed. An analysis of GO enrichment findings of Sertoli cells showed BP and MF to be common DEGs. When these gene mutations have been validated, they can be used to create new GPCR antagonists or agonists that are receptor-selective.</p>\",\"PeriodicalId\":11248,\"journal\":{\"name\":\"DNA and cell biology\",\"volume\":\" \",\"pages\":\"617-637\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DNA and cell biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1089/dna.2023.0189\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/8/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DNA and cell biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/dna.2023.0189","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/22 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Altered G-Protein Transduction Protein Gene Expression in the Testis of Infertile Patients with Nonobstructive Azoospermia.
Recent studies have shown that several members of the G-protein-coupled receptors (GPCR) superfamily play crucial roles in the maintenance of ion-water homeostasis of the sperm and Sertoli cells, development of the germ cells, formation of the blood barrier, and maturation of sperm. The GPCR, guanyl-nucleotide exchange factor, membrane traffic protein, and small GTPase genes were analyzed by microarray and bioinformatics (3513 sperm and Sertoli cell genes). In the microarray analyses of three human cases with different nonobstructive azoospermia sperm, the expression of GOLGA8IP, OR2AT4, PHKA1, A2M, OR56A1, SEMA3G, LRRC17, APP, ARHGAP33, RABGEF1, NPY2R, GHRHR, LTB4R2, GRIK5, OR6K6, NAPG, OR6C65, VPS35, FPR3, and ARL4A was upregulated, while expression of MARS, SIRPG, OGFR, GPR150, LRRK1, and NGEF was downregulated. There was an increase in GBP3, GBP3, TNF, TGFB3, and CLTC expression in the Sertoli cells of three human cases with NOA, whereas expression of PAQR4, RRAGD, RAC2, SERPINB8, IRPB1, MRGPRF, RASA2, SIRPG, RGS2, RAP2A, RAB2B, ARL17, SERINC4, XIAP, DENND4C, ANKRA2, CSTA, STX18, and SNAP23 were downregulated. A combined analysis of Enrich Shiny Gene Ontology (GO), STRING, and Cytoscape was used to predict proteins' molecular interactions and then to recognize master pathways. Functional enrichment analysis showed that the biological process (BP), regulation of protein metabolic process, regulation of small GTPase-mediated signal transduction were significantly expressed in up-/downregulated differentially expressed genes (DEGs) in sperm. In molecular function (MF) experiments of DEGs that were up-/downregulated, it was found that GPCR activity, guanyl ribonucleotide binding, GTPase activity and nucleoside-triphosphatase activity were overexpressed. An analysis of GO enrichment findings of Sertoli cells showed BP and MF to be common DEGs. When these gene mutations have been validated, they can be used to create new GPCR antagonists or agonists that are receptor-selective.
期刊介绍:
DNA and Cell Biology delivers authoritative, peer-reviewed research on all aspects of molecular and cellular biology, with a unique focus on combining mechanistic and clinical studies to drive the field forward.
DNA and Cell Biology coverage includes:
Gene Structure, Function, and Regulation
Gene regulation
Molecular mechanisms of cell activation
Mechanisms of transcriptional, translational, or epigenetic control of gene expression
Molecular Medicine
Molecular pathogenesis
Genetic approaches to cancer and autoimmune diseases
Translational studies in cell and molecular biology
Cellular Organelles
Autophagy
Apoptosis
P bodies
Peroxisosomes
Protein Biosynthesis and Degradation
Regulation of protein synthesis
Post-translational modifications
Control of degradation
Cell-Autonomous Inflammation and Host Cell Response to Infection
Responses to cytokines and other physiological mediators
Evasive pathways of pathogens.