{"title":"钙皮质激素受体拮抗剂在心血管翻译生物学中的应用。","authors":"Robert J Chilton, José Silva-Cardoso","doi":"10.1097/XCE.0000000000000289","DOIUrl":null,"url":null,"abstract":"<p><p>This review examines the role of mineralocorticoid receptor antagonists (MRAs) in cardiovascular biology and the molecular mechanisms involved in mineralocorticoid receptor antagonism. The data discussed suggest that MRAs can play an important role in decreasing the impact of inflammation and fibrosis on cardiorenal outcomes. Evidence derived from major randomized clinical trials demonstrates that steroidal MRAs reduce mortality in patients with heart failure and reduced ejection fraction. Initial positive findings observed in patients with chronic kidney disease and type 2 diabetes (T2D) indicate the possible mechanisms of action of nonsteroidal MRAs, and the clinical benefits for patients with cardiorenal disease and T2D. This article supports the application of basic science concepts to expand our understanding of the molecular mechanisms of action involved in pathophysiology. This approach encourages the development of treatment options before diseases clinically manifest. Video Abstract: http://links.lww.com/CAEN/A42.</p>","PeriodicalId":43231,"journal":{"name":"Cardiovascular Endocrinology & Metabolism","volume":"12 3","pages":"e0289"},"PeriodicalIF":1.3000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10443768/pdf/","citationCount":"0","resultStr":"{\"title\":\"Mineralocorticoid receptor antagonists in cardiovascular translational biology.\",\"authors\":\"Robert J Chilton, José Silva-Cardoso\",\"doi\":\"10.1097/XCE.0000000000000289\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This review examines the role of mineralocorticoid receptor antagonists (MRAs) in cardiovascular biology and the molecular mechanisms involved in mineralocorticoid receptor antagonism. The data discussed suggest that MRAs can play an important role in decreasing the impact of inflammation and fibrosis on cardiorenal outcomes. Evidence derived from major randomized clinical trials demonstrates that steroidal MRAs reduce mortality in patients with heart failure and reduced ejection fraction. Initial positive findings observed in patients with chronic kidney disease and type 2 diabetes (T2D) indicate the possible mechanisms of action of nonsteroidal MRAs, and the clinical benefits for patients with cardiorenal disease and T2D. This article supports the application of basic science concepts to expand our understanding of the molecular mechanisms of action involved in pathophysiology. This approach encourages the development of treatment options before diseases clinically manifest. Video Abstract: http://links.lww.com/CAEN/A42.</p>\",\"PeriodicalId\":43231,\"journal\":{\"name\":\"Cardiovascular Endocrinology & Metabolism\",\"volume\":\"12 3\",\"pages\":\"e0289\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10443768/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cardiovascular Endocrinology & Metabolism\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1097/XCE.0000000000000289\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular Endocrinology & Metabolism","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1097/XCE.0000000000000289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
Mineralocorticoid receptor antagonists in cardiovascular translational biology.
This review examines the role of mineralocorticoid receptor antagonists (MRAs) in cardiovascular biology and the molecular mechanisms involved in mineralocorticoid receptor antagonism. The data discussed suggest that MRAs can play an important role in decreasing the impact of inflammation and fibrosis on cardiorenal outcomes. Evidence derived from major randomized clinical trials demonstrates that steroidal MRAs reduce mortality in patients with heart failure and reduced ejection fraction. Initial positive findings observed in patients with chronic kidney disease and type 2 diabetes (T2D) indicate the possible mechanisms of action of nonsteroidal MRAs, and the clinical benefits for patients with cardiorenal disease and T2D. This article supports the application of basic science concepts to expand our understanding of the molecular mechanisms of action involved in pathophysiology. This approach encourages the development of treatment options before diseases clinically manifest. Video Abstract: http://links.lww.com/CAEN/A42.