胰腺癌中蛋白质组学驱动的生物标志物。

IF 4 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Luís Ramalhete, Emanuel Vigia, Rúben Araújo, Hugo Pinto Marques
{"title":"胰腺癌中蛋白质组学驱动的生物标志物。","authors":"Luís Ramalhete,&nbsp;Emanuel Vigia,&nbsp;Rúben Araújo,&nbsp;Hugo Pinto Marques","doi":"10.3390/proteomes11030024","DOIUrl":null,"url":null,"abstract":"<p><p>Pancreatic cancer is a devastating disease that has a grim prognosis, highlighting the need for improved screening, diagnosis, and treatment strategies. Currently, the sole biomarker for pancreatic ductal adenocarcinoma (PDAC) authorized by the U.S. Food and Drug Administration is CA 19-9, which proves to be the most beneficial in tracking treatment response rather than in early detection. In recent years, proteomics has emerged as a powerful tool for advancing our understanding of pancreatic cancer biology and identifying potential biomarkers and therapeutic targets. This review aims to offer a comprehensive survey of proteomics' current status in pancreatic cancer research, specifically accentuating its applications and its potential to drastically enhance screening, diagnosis, and treatment response. With respect to screening and diagnostic precision, proteomics carries the capacity to augment the sensitivity and specificity of extant screening and diagnostic methodologies. Nonetheless, more research is imperative for validating potential biomarkers and establishing standard procedures for sample preparation and data analysis. Furthermore, proteomics presents opportunities for unveiling new biomarkers and therapeutic targets, as well as fostering the development of personalized treatment strategies based on protein expression patterns associated with treatment response. In conclusion, proteomics holds great promise for advancing our understanding of pancreatic cancer biology and improving patient outcomes. It is essential to maintain momentum in investment and innovation in this arena to unearth more groundbreaking discoveries and transmute them into practical diagnostic and therapeutic strategies in the clinical context.</p>","PeriodicalId":20877,"journal":{"name":"Proteomes","volume":"11 3","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10443269/pdf/","citationCount":"1","resultStr":"{\"title\":\"Proteomics-Driven Biomarkers in Pancreatic Cancer.\",\"authors\":\"Luís Ramalhete,&nbsp;Emanuel Vigia,&nbsp;Rúben Araújo,&nbsp;Hugo Pinto Marques\",\"doi\":\"10.3390/proteomes11030024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pancreatic cancer is a devastating disease that has a grim prognosis, highlighting the need for improved screening, diagnosis, and treatment strategies. Currently, the sole biomarker for pancreatic ductal adenocarcinoma (PDAC) authorized by the U.S. Food and Drug Administration is CA 19-9, which proves to be the most beneficial in tracking treatment response rather than in early detection. In recent years, proteomics has emerged as a powerful tool for advancing our understanding of pancreatic cancer biology and identifying potential biomarkers and therapeutic targets. This review aims to offer a comprehensive survey of proteomics' current status in pancreatic cancer research, specifically accentuating its applications and its potential to drastically enhance screening, diagnosis, and treatment response. With respect to screening and diagnostic precision, proteomics carries the capacity to augment the sensitivity and specificity of extant screening and diagnostic methodologies. Nonetheless, more research is imperative for validating potential biomarkers and establishing standard procedures for sample preparation and data analysis. Furthermore, proteomics presents opportunities for unveiling new biomarkers and therapeutic targets, as well as fostering the development of personalized treatment strategies based on protein expression patterns associated with treatment response. In conclusion, proteomics holds great promise for advancing our understanding of pancreatic cancer biology and improving patient outcomes. It is essential to maintain momentum in investment and innovation in this arena to unearth more groundbreaking discoveries and transmute them into practical diagnostic and therapeutic strategies in the clinical context.</p>\",\"PeriodicalId\":20877,\"journal\":{\"name\":\"Proteomes\",\"volume\":\"11 3\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2023-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10443269/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proteomes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/proteomes11030024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proteomes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/proteomes11030024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

胰腺癌是一种预后恶劣的毁灭性疾病,因此需要改进筛查、诊断和治疗策略。目前,美国食品和药物管理局(fda)批准的胰腺导管腺癌(PDAC)的唯一生物标志物是CA 19-9,它被证明在跟踪治疗反应而不是早期发现方面最有益。近年来,蛋白质组学已成为促进我们对胰腺癌生物学的理解和识别潜在生物标志物和治疗靶点的有力工具。本文旨在全面综述蛋白质组学在胰腺癌研究中的现状,特别强调其应用及其在显著提高筛查、诊断和治疗反应方面的潜力。在筛选和诊断精度方面,蛋白质组学具有增强现有筛选和诊断方法的敏感性和特异性的能力。然而,验证潜在的生物标志物和建立样品制备和数据分析的标准程序需要更多的研究。此外,蛋白质组学为揭示新的生物标志物和治疗靶点提供了机会,并促进了基于与治疗反应相关的蛋白质表达模式的个性化治疗策略的发展。总之,蛋白质组学在促进我们对胰腺癌生物学的理解和改善患者预后方面具有很大的希望。必须保持在这一领域的投资和创新势头,以发掘更多突破性的发现,并将其转化为临床环境中的实用诊断和治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Proteomics-Driven Biomarkers in Pancreatic Cancer.

Pancreatic cancer is a devastating disease that has a grim prognosis, highlighting the need for improved screening, diagnosis, and treatment strategies. Currently, the sole biomarker for pancreatic ductal adenocarcinoma (PDAC) authorized by the U.S. Food and Drug Administration is CA 19-9, which proves to be the most beneficial in tracking treatment response rather than in early detection. In recent years, proteomics has emerged as a powerful tool for advancing our understanding of pancreatic cancer biology and identifying potential biomarkers and therapeutic targets. This review aims to offer a comprehensive survey of proteomics' current status in pancreatic cancer research, specifically accentuating its applications and its potential to drastically enhance screening, diagnosis, and treatment response. With respect to screening and diagnostic precision, proteomics carries the capacity to augment the sensitivity and specificity of extant screening and diagnostic methodologies. Nonetheless, more research is imperative for validating potential biomarkers and establishing standard procedures for sample preparation and data analysis. Furthermore, proteomics presents opportunities for unveiling new biomarkers and therapeutic targets, as well as fostering the development of personalized treatment strategies based on protein expression patterns associated with treatment response. In conclusion, proteomics holds great promise for advancing our understanding of pancreatic cancer biology and improving patient outcomes. It is essential to maintain momentum in investment and innovation in this arena to unearth more groundbreaking discoveries and transmute them into practical diagnostic and therapeutic strategies in the clinical context.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Proteomes
Proteomes Biochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
6.50
自引率
3.00%
发文量
37
审稿时长
11 weeks
期刊介绍: Proteomes (ISSN 2227-7382) is an open access, peer reviewed journal on all aspects of proteome science. Proteomes covers the multi-disciplinary topics of structural and functional biology, protein chemistry, cell biology, methodology used for protein analysis, including mass spectrometry, protein arrays, bioinformatics, HTS assays, etc. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of papers. Scope: -whole proteome analysis of any organism -disease/pharmaceutical studies -comparative proteomics -protein-ligand/protein interactions -structure/functional proteomics -gene expression -methodology -bioinformatics -applications of proteomics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信