{"title":"使用贝叶斯-二项模型的罕见事件元分析。","authors":"Katrin Jansen, Heinz Holling","doi":"10.1002/jrsm.1662","DOIUrl":null,"url":null,"abstract":"<p>In meta-analyses of rare events, it can be challenging to obtain a reliable estimate of the pooled effect, in particular when the meta-analysis is based on a small number of studies. Recent simulation studies have shown that the beta-binomial model is a promising candidate in this situation, but have thus far only investigated its performance in a frequentist framework. In this study, we aim to make the beta-binomial model for meta-analysis of rare events amenable to Bayesian inference by proposing prior distributions for the effect parameter and investigating the models' robustness to different specifications of priors for the scale parameter. To evaluate the performance of Bayesian beta-binomial models with different priors, we conducted a simulation study with two different data generating models in which we varied the size of the pooled effect, the degree of heterogeneity, the baseline probability, and the sample size. Our results show that while some caution must be exercised when using the Bayesian beta-binomial in meta-analyses with extremely sparse data, the use of a weakly informative prior for the effect parameter is beneficial in terms of mean bias, mean squared error, and coverage. For the scale parameter, half-normal and exponential distributions are identified as candidate priors in meta-analysis of rare events using the Bayesian beta-binomial model.</p>","PeriodicalId":226,"journal":{"name":"Research Synthesis Methods","volume":"14 6","pages":"853-873"},"PeriodicalIF":5.0000,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rare events meta-analysis using the Bayesian beta-binomial model\",\"authors\":\"Katrin Jansen, Heinz Holling\",\"doi\":\"10.1002/jrsm.1662\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In meta-analyses of rare events, it can be challenging to obtain a reliable estimate of the pooled effect, in particular when the meta-analysis is based on a small number of studies. Recent simulation studies have shown that the beta-binomial model is a promising candidate in this situation, but have thus far only investigated its performance in a frequentist framework. In this study, we aim to make the beta-binomial model for meta-analysis of rare events amenable to Bayesian inference by proposing prior distributions for the effect parameter and investigating the models' robustness to different specifications of priors for the scale parameter. To evaluate the performance of Bayesian beta-binomial models with different priors, we conducted a simulation study with two different data generating models in which we varied the size of the pooled effect, the degree of heterogeneity, the baseline probability, and the sample size. Our results show that while some caution must be exercised when using the Bayesian beta-binomial in meta-analyses with extremely sparse data, the use of a weakly informative prior for the effect parameter is beneficial in terms of mean bias, mean squared error, and coverage. For the scale parameter, half-normal and exponential distributions are identified as candidate priors in meta-analysis of rare events using the Bayesian beta-binomial model.</p>\",\"PeriodicalId\":226,\"journal\":{\"name\":\"Research Synthesis Methods\",\"volume\":\"14 6\",\"pages\":\"853-873\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2023-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research Synthesis Methods\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jrsm.1662\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research Synthesis Methods","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jrsm.1662","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Rare events meta-analysis using the Bayesian beta-binomial model
In meta-analyses of rare events, it can be challenging to obtain a reliable estimate of the pooled effect, in particular when the meta-analysis is based on a small number of studies. Recent simulation studies have shown that the beta-binomial model is a promising candidate in this situation, but have thus far only investigated its performance in a frequentist framework. In this study, we aim to make the beta-binomial model for meta-analysis of rare events amenable to Bayesian inference by proposing prior distributions for the effect parameter and investigating the models' robustness to different specifications of priors for the scale parameter. To evaluate the performance of Bayesian beta-binomial models with different priors, we conducted a simulation study with two different data generating models in which we varied the size of the pooled effect, the degree of heterogeneity, the baseline probability, and the sample size. Our results show that while some caution must be exercised when using the Bayesian beta-binomial in meta-analyses with extremely sparse data, the use of a weakly informative prior for the effect parameter is beneficial in terms of mean bias, mean squared error, and coverage. For the scale parameter, half-normal and exponential distributions are identified as candidate priors in meta-analysis of rare events using the Bayesian beta-binomial model.
期刊介绍:
Research Synthesis Methods is a reputable, peer-reviewed journal that focuses on the development and dissemination of methods for conducting systematic research synthesis. Our aim is to advance the knowledge and application of research synthesis methods across various disciplines.
Our journal provides a platform for the exchange of ideas and knowledge related to designing, conducting, analyzing, interpreting, reporting, and applying research synthesis. While research synthesis is commonly practiced in the health and social sciences, our journal also welcomes contributions from other fields to enrich the methodologies employed in research synthesis across scientific disciplines.
By bridging different disciplines, we aim to foster collaboration and cross-fertilization of ideas, ultimately enhancing the quality and effectiveness of research synthesis methods. Whether you are a researcher, practitioner, or stakeholder involved in research synthesis, our journal strives to offer valuable insights and practical guidance for your work.