Shuai Huang, Yincong Xue, Wanying Chen, Mei Xue, Lei Miao, Li Dong, Hao Zuo, Hezhi Wen, Xiong Lei, Zhixiao Xu, Meiyu Quan, Lisha Guo, Yawen Zheng, Zhendong Wang, Li Yang, Yuping Li, Chengshui Chen
{"title":"成纤维细胞生长因子10通过Nrf2抑制过度自噬减轻急性肺损伤。","authors":"Shuai Huang, Yincong Xue, Wanying Chen, Mei Xue, Lei Miao, Li Dong, Hao Zuo, Hezhi Wen, Xiong Lei, Zhixiao Xu, Meiyu Quan, Lisha Guo, Yawen Zheng, Zhendong Wang, Li Yang, Yuping Li, Chengshui Chen","doi":"10.1530/JOE-23-0095","DOIUrl":null,"url":null,"abstract":"<p><p>Acute lung injury (ALI) is associated with an increased incidence of respiratory diseases, which are devastating clinical disorders with high global mortality and morbidity. Evidence confirms that fibroblast growth factors (FGFs) play key roles in mediating ALI. Mice were treated with LPS (lipopolysaccharide: 5 mg/kg, intratracheally) to establish an in vivo ALI model. Human lung epithelial BEAS-2B cells cultured in a corresponding medium with LPS were used to mimic the ALI model in vitro. In this study, we characterized FGF10 pretreatment (5 mg/kg, intratracheally) which improved LPS-induced ALI, including histopathological changes, and reduced pulmonary edema. At the cellular level, FGF10 pretreatment (10 ng/mL) alleviated LPS-induced ALI accompanied by reduced reactive oxygen species (ROS) accumulation and inflammatory responses, such as IL-1β, IL-6, and IL-10, as well as suppressed excessive autophagy. Additionally, immunoblotting and co-immunoprecipitation showed that FGF10 activated nuclear factor erythroid-2-related factor 2 (Nrf2) signaling pathway via Nrf2 nuclear translocation by promoting the interaction between p62 and keap1, thereby preventing LPS-induced ALI. Nrf2 knockout significantly reversed these protective effects of FGF10. Together, FGF10 protects against LPS-induced ALI by restraining autophagy via p62-Kelch-like ECH-associated protein 1 (Keap1)-Nrf2 signaling pathway, implying that FGF10 could be a novel therapy for ALI.</p>","PeriodicalId":15740,"journal":{"name":"Journal of Endocrinology","volume":"259 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fibroblast growth factor 10 alleviates acute lung injury by inhibiting excessive autophagy via Nrf2.\",\"authors\":\"Shuai Huang, Yincong Xue, Wanying Chen, Mei Xue, Lei Miao, Li Dong, Hao Zuo, Hezhi Wen, Xiong Lei, Zhixiao Xu, Meiyu Quan, Lisha Guo, Yawen Zheng, Zhendong Wang, Li Yang, Yuping Li, Chengshui Chen\",\"doi\":\"10.1530/JOE-23-0095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Acute lung injury (ALI) is associated with an increased incidence of respiratory diseases, which are devastating clinical disorders with high global mortality and morbidity. Evidence confirms that fibroblast growth factors (FGFs) play key roles in mediating ALI. Mice were treated with LPS (lipopolysaccharide: 5 mg/kg, intratracheally) to establish an in vivo ALI model. Human lung epithelial BEAS-2B cells cultured in a corresponding medium with LPS were used to mimic the ALI model in vitro. In this study, we characterized FGF10 pretreatment (5 mg/kg, intratracheally) which improved LPS-induced ALI, including histopathological changes, and reduced pulmonary edema. At the cellular level, FGF10 pretreatment (10 ng/mL) alleviated LPS-induced ALI accompanied by reduced reactive oxygen species (ROS) accumulation and inflammatory responses, such as IL-1β, IL-6, and IL-10, as well as suppressed excessive autophagy. Additionally, immunoblotting and co-immunoprecipitation showed that FGF10 activated nuclear factor erythroid-2-related factor 2 (Nrf2) signaling pathway via Nrf2 nuclear translocation by promoting the interaction between p62 and keap1, thereby preventing LPS-induced ALI. Nrf2 knockout significantly reversed these protective effects of FGF10. Together, FGF10 protects against LPS-induced ALI by restraining autophagy via p62-Kelch-like ECH-associated protein 1 (Keap1)-Nrf2 signaling pathway, implying that FGF10 could be a novel therapy for ALI.</p>\",\"PeriodicalId\":15740,\"journal\":{\"name\":\"Journal of Endocrinology\",\"volume\":\"259 1\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Endocrinology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1530/JOE-23-0095\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Endocrinology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1530/JOE-23-0095","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
摘要
急性肺损伤(ALI)与呼吸系统疾病发病率增加有关,呼吸系统疾病是具有全球高死亡率和发病率的破坏性临床疾病。证据证实成纤维细胞生长因子(FGFs)在介导ALI中起关键作用。采用LPS(脂多糖:5 mg/kg,气管内灌胃)建立小鼠体内ALI模型。将人肺上皮细胞BEAS-2B细胞培养于相应的LPS培养基中,体外模拟ALI模型。在本研究中,我们描述了FGF10预处理(5mg /kg,气管内)改善lps诱导的ALI,包括组织病理学改变,并减少肺水肿。在细胞水平上,FGF10预处理(10 ng/mL)可减轻lps诱导的ALI,同时降低活性氧(ROS)积累和炎症反应,如IL-1β、IL-6和IL-10,并抑制过度自噬。此外,免疫印迹和共免疫沉淀表明,FGF10通过促进p62与keap1的相互作用,通过Nrf2核易位激活核因子红细胞2相关因子2 (Nrf2)信号通路,从而预防lps诱导的ALI。敲除Nrf2显著逆转了FGF10的这些保护作用。总之,FGF10通过p62- kelch样ECH-associated protein 1 (Keap1)-Nrf2信号通路抑制自噬,从而抑制lps诱导的ALI,这意味着FGF10可能是一种新的ALI治疗方法。
Fibroblast growth factor 10 alleviates acute lung injury by inhibiting excessive autophagy via Nrf2.
Acute lung injury (ALI) is associated with an increased incidence of respiratory diseases, which are devastating clinical disorders with high global mortality and morbidity. Evidence confirms that fibroblast growth factors (FGFs) play key roles in mediating ALI. Mice were treated with LPS (lipopolysaccharide: 5 mg/kg, intratracheally) to establish an in vivo ALI model. Human lung epithelial BEAS-2B cells cultured in a corresponding medium with LPS were used to mimic the ALI model in vitro. In this study, we characterized FGF10 pretreatment (5 mg/kg, intratracheally) which improved LPS-induced ALI, including histopathological changes, and reduced pulmonary edema. At the cellular level, FGF10 pretreatment (10 ng/mL) alleviated LPS-induced ALI accompanied by reduced reactive oxygen species (ROS) accumulation and inflammatory responses, such as IL-1β, IL-6, and IL-10, as well as suppressed excessive autophagy. Additionally, immunoblotting and co-immunoprecipitation showed that FGF10 activated nuclear factor erythroid-2-related factor 2 (Nrf2) signaling pathway via Nrf2 nuclear translocation by promoting the interaction between p62 and keap1, thereby preventing LPS-induced ALI. Nrf2 knockout significantly reversed these protective effects of FGF10. Together, FGF10 protects against LPS-induced ALI by restraining autophagy via p62-Kelch-like ECH-associated protein 1 (Keap1)-Nrf2 signaling pathway, implying that FGF10 could be a novel therapy for ALI.
期刊介绍:
Journal of Endocrinology is a leading global journal that publishes original research articles, reviews and science guidelines. Its focus is on endocrine physiology and metabolism, including hormone secretion; hormone action; biological effects. The journal publishes basic and translational studies at the organ, tissue and whole organism level.