Débora Tavares de Resende E Silva, Matheus Ribeiro Bizuti, Natan Rodrigues de Oliveira, Lucas Zannini Medeiros Lima, Victória Galletti Dos Santos Arraes, Ana Carolina Gonçalves Zietz, Carolina Zin, Guilherme Vinício de Sousa Silva, Josiano Guilherme Puhle, Fabiana Brum Haag
{"title":"体育锻炼是控制血液透析慢性肾病患者肌肉疏松症的嘌呤能系统调节器。","authors":"Débora Tavares de Resende E Silva, Matheus Ribeiro Bizuti, Natan Rodrigues de Oliveira, Lucas Zannini Medeiros Lima, Victória Galletti Dos Santos Arraes, Ana Carolina Gonçalves Zietz, Carolina Zin, Guilherme Vinício de Sousa Silva, Josiano Guilherme Puhle, Fabiana Brum Haag","doi":"10.1007/s11302-023-09950-1","DOIUrl":null,"url":null,"abstract":"<p><p>The word sarcopenia derives from the Greek terms \"sarx\" for meat and \"penia\" for loss, thus being used to define reductions in muscle mass, muscle strength, and lower physical performance that compromise, mainly, the elderly population. Its high negative impact on patients' quality of life encourages the production and publication of new studies that seek to find methods to prevent and reverse cases of loss of muscle mass and strength. Furthermore, the high prevalence of sarcopenia in patients with chronic kidney disease (CKD) is closely related to its pathophysiology, which consists of a state of increased protein catabolism and decreased muscle tissue synthesis. Also considering the inflammatory nature of CKD and sarcopenia, the purinergic system has been an important target of studies, which seek to relate it to the two previous conditions. This system achieves anti-inflammatory action by inhibiting, through adenosine, pro-inflammatory factors such as interleukin-12 (IL-12), tumor necrosis factor alpha (TNF-α), and nitric oxide (NO), as well as by releasing anti-inflammatory substances such as interleukin-10 (IL-10). Simultaneously, the purinergic system presents pro-inflammatory activity, signaled by adenosine triphosphate (ATP), which occurs through the activation of T cells and the release of pro-inflammatory factors such as those mentioned above. Therefore, the ability of this system to act on inflammatory processes can promote positive and negative changes in the clinical aspect of patients with CKD and/or sarcopenia. Furthermore, it appears that there is a correlation between the practice of repeated physical exercise with the clinical improvement and in the quality of life of these patients, presenting a decrease in the levels of C-reactive protein (CRP), NTPDase, and the pro-inflammatory cytokine IL-6, such as increases in IL-10 resulting from modulation of the purinergic system. In this way, the present article seeks to evaluate the effect of physical exercise as a modulator of the purinergic system in the control of sarcopenia in patients with CKD on hemodialysis, in order to trace a relationship that can bring benefits both for biological markers and for quality of life of these patients.</p>","PeriodicalId":20952,"journal":{"name":"Purinergic Signalling","volume":" ","pages":"213-222"},"PeriodicalIF":3.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11189381/pdf/","citationCount":"0","resultStr":"{\"title\":\"Physical exercise as a modulator of the purinergic system in the control of sarcopenia in individuals with chronic kidney disease on hemodialysis.\",\"authors\":\"Débora Tavares de Resende E Silva, Matheus Ribeiro Bizuti, Natan Rodrigues de Oliveira, Lucas Zannini Medeiros Lima, Victória Galletti Dos Santos Arraes, Ana Carolina Gonçalves Zietz, Carolina Zin, Guilherme Vinício de Sousa Silva, Josiano Guilherme Puhle, Fabiana Brum Haag\",\"doi\":\"10.1007/s11302-023-09950-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The word sarcopenia derives from the Greek terms \\\"sarx\\\" for meat and \\\"penia\\\" for loss, thus being used to define reductions in muscle mass, muscle strength, and lower physical performance that compromise, mainly, the elderly population. Its high negative impact on patients' quality of life encourages the production and publication of new studies that seek to find methods to prevent and reverse cases of loss of muscle mass and strength. Furthermore, the high prevalence of sarcopenia in patients with chronic kidney disease (CKD) is closely related to its pathophysiology, which consists of a state of increased protein catabolism and decreased muscle tissue synthesis. Also considering the inflammatory nature of CKD and sarcopenia, the purinergic system has been an important target of studies, which seek to relate it to the two previous conditions. This system achieves anti-inflammatory action by inhibiting, through adenosine, pro-inflammatory factors such as interleukin-12 (IL-12), tumor necrosis factor alpha (TNF-α), and nitric oxide (NO), as well as by releasing anti-inflammatory substances such as interleukin-10 (IL-10). Simultaneously, the purinergic system presents pro-inflammatory activity, signaled by adenosine triphosphate (ATP), which occurs through the activation of T cells and the release of pro-inflammatory factors such as those mentioned above. Therefore, the ability of this system to act on inflammatory processes can promote positive and negative changes in the clinical aspect of patients with CKD and/or sarcopenia. Furthermore, it appears that there is a correlation between the practice of repeated physical exercise with the clinical improvement and in the quality of life of these patients, presenting a decrease in the levels of C-reactive protein (CRP), NTPDase, and the pro-inflammatory cytokine IL-6, such as increases in IL-10 resulting from modulation of the purinergic system. In this way, the present article seeks to evaluate the effect of physical exercise as a modulator of the purinergic system in the control of sarcopenia in patients with CKD on hemodialysis, in order to trace a relationship that can bring benefits both for biological markers and for quality of life of these patients.</p>\",\"PeriodicalId\":20952,\"journal\":{\"name\":\"Purinergic Signalling\",\"volume\":\" \",\"pages\":\"213-222\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11189381/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Purinergic Signalling\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11302-023-09950-1\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/6/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Purinergic Signalling","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11302-023-09950-1","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/27 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
肌肉疏松症(sarcopenia)一词来源于希腊语中的 "sarx"(肉)和 "penia"(损失),因此被用来定义肌肉质量、肌肉力量和体能下降,这主要影响到老年人群。肌肉萎缩症对患者生活质量的负面影响很大,这促使人们开展并发表新的研究,试图找到预防和扭转肌肉质量和力量下降的方法。此外,慢性肾脏病(CKD)患者肌肉疏松症的高发病率与其病理生理学密切相关,即蛋白质分解代谢增加,肌肉组织合成减少。此外,考虑到慢性肾脏病和肌肉疏松症的炎症性质,嘌呤能系统一直是研究的重要目标,这些研究试图将其与前两种病症联系起来。该系统通过腺苷抑制白细胞介素-12(IL-12)、肿瘤坏死因子α(TNF-α)和一氧化氮(NO)等促炎因子,并释放白细胞介素-10(IL-10)等抗炎物质,从而达到抗炎作用。与此同时,嘌呤能系统在三磷酸腺苷(ATP)的作用下,通过激活 T 细胞和释放上述促炎因子,产生促炎活性。因此,该系统作用于炎症过程的能力可促进慢性肾脏病和/或肌肉疏松症患者的临床方面发生积极或消极的变化。此外,反复进行体育锻炼似乎与这些患者的临床改善和生活质量之间存在关联,表现为 C 反应蛋白 (CRP)、NTPDase 和促炎细胞因子 IL-6 水平的下降,如嘌呤能系统调节导致的 IL-10 水平的上升。因此,本文试图评估体育锻炼作为嘌呤能系统的调节剂,在控制血液透析的慢性肾脏病患者肌肉疏松症方面的作用,以追踪可为这些患者的生物指标和生活质量带来益处的关系。
Physical exercise as a modulator of the purinergic system in the control of sarcopenia in individuals with chronic kidney disease on hemodialysis.
The word sarcopenia derives from the Greek terms "sarx" for meat and "penia" for loss, thus being used to define reductions in muscle mass, muscle strength, and lower physical performance that compromise, mainly, the elderly population. Its high negative impact on patients' quality of life encourages the production and publication of new studies that seek to find methods to prevent and reverse cases of loss of muscle mass and strength. Furthermore, the high prevalence of sarcopenia in patients with chronic kidney disease (CKD) is closely related to its pathophysiology, which consists of a state of increased protein catabolism and decreased muscle tissue synthesis. Also considering the inflammatory nature of CKD and sarcopenia, the purinergic system has been an important target of studies, which seek to relate it to the two previous conditions. This system achieves anti-inflammatory action by inhibiting, through adenosine, pro-inflammatory factors such as interleukin-12 (IL-12), tumor necrosis factor alpha (TNF-α), and nitric oxide (NO), as well as by releasing anti-inflammatory substances such as interleukin-10 (IL-10). Simultaneously, the purinergic system presents pro-inflammatory activity, signaled by adenosine triphosphate (ATP), which occurs through the activation of T cells and the release of pro-inflammatory factors such as those mentioned above. Therefore, the ability of this system to act on inflammatory processes can promote positive and negative changes in the clinical aspect of patients with CKD and/or sarcopenia. Furthermore, it appears that there is a correlation between the practice of repeated physical exercise with the clinical improvement and in the quality of life of these patients, presenting a decrease in the levels of C-reactive protein (CRP), NTPDase, and the pro-inflammatory cytokine IL-6, such as increases in IL-10 resulting from modulation of the purinergic system. In this way, the present article seeks to evaluate the effect of physical exercise as a modulator of the purinergic system in the control of sarcopenia in patients with CKD on hemodialysis, in order to trace a relationship that can bring benefits both for biological markers and for quality of life of these patients.
期刊介绍:
Nucleotides and nucleosides are primitive biological molecules that were utilized early in evolution both as intracellular energy sources and as extracellular signalling molecules. ATP was first identified as a neurotransmitter and later as a co-transmitter with all the established neurotransmitters in both peripheral and central nervous systems. Four subtypes of P1 (adenosine) receptors, 7 subtypes of P2X ion channel receptors and 8 subtypes of P2Y G protein-coupled receptors have currently been identified. Since P2 receptors were first cloned in the early 1990’s, there is clear evidence for the widespread distribution of both P1 and P2 receptor subtypes in neuronal and non-neuronal cells, including glial, immune, bone, muscle, endothelial, epithelial and endocrine cells.