Ameena M. Al-bonayan, Nasser A. Alamrani, Saham F. Ibarhiam, Ali Q. Alorabi, Hana M. Abumelha, Turki M. Habeebullah, Nashwa M. El-Metwaly
{"title":"荧光探针锚定介孔二氧化硅纳米球用于石油产品中Ni(II)离子的快速、可靠的裸眼检测和电镀废水的去除","authors":"Ameena M. Al-bonayan, Nasser A. Alamrani, Saham F. Ibarhiam, Ali Q. Alorabi, Hana M. Abumelha, Turki M. Habeebullah, Nashwa M. El-Metwaly","doi":"10.1002/jmr.3013","DOIUrl":null,"url":null,"abstract":"<p>This paper presents the expansion of an optical, chemical sensor that can rapidly and reliably detect, quantify, and remove Ni(II) ions in oil products and electroplating wastewater sources. The sensor is based on mesoporous silica nanospheres (MSNs) that have an extraordinary surface area, uniform surface morphology, and capacious porosity, making them an excellent substrate for the anchoring of the chromoionophoic probe,3′-{(1E,1′ E)-[(4-chloro-1,2 phenylene)bis (azaneylylidene)]-bis(methaneylylidene)}bis(2-hydroxybenzoic acid) (CPAMHP). The CPAMHP probe is highly selective and sensitive to Ni(II), enabling it to be used in naked-eye colorimetric recognition of Ni(II) ions. The MSNs provide several accessible exhibited sites for uniform anchoring of CPAMHP probe molecules, making it a viable chemical sensor even with the use of naked-eye sensing. The surface characters and structural analysis of the MSNs and CPAMHP sensor samples were examined using various techniques. The CPAMHP probe-anchored MSNs exhibit a clear and vivid color shift from pale yellow to green upon exposure to various concentrations of Ni(II) ions, with a reaction time down to approximately 1 minute. Furthermore, the MSNs can serve as a base to retrieve extremely trace amounts of Ni(II) ions, making the CPAMHP sensor a dual-functional device. The calculated limit of recognition for Ni(II) ions using the fabricated CPAMHP sensor samples is 0.318 ppb (5.43 × 10<sup>−9</sup> M). The results suggest that the proposed sensor is a promising tool for the sensitive and reliable detection of Ni(II) ions in petroleum products and for removing Ni(II) ions in electroplating wastewater; the data indicate an excellent removal of Ni (II) up to 96.8%, highlighting the high accuracy and precision of our CPAMHP sensor.</p>","PeriodicalId":16531,"journal":{"name":"Journal of Molecular Recognition","volume":"36 6","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chromoionophoric probe-anchored mesoporous silica nanospheres for rapid and reliable naked-eye detection of Ni(II) ions in petroleum products and removal from electroplating wastewater\",\"authors\":\"Ameena M. Al-bonayan, Nasser A. Alamrani, Saham F. Ibarhiam, Ali Q. Alorabi, Hana M. Abumelha, Turki M. Habeebullah, Nashwa M. El-Metwaly\",\"doi\":\"10.1002/jmr.3013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper presents the expansion of an optical, chemical sensor that can rapidly and reliably detect, quantify, and remove Ni(II) ions in oil products and electroplating wastewater sources. The sensor is based on mesoporous silica nanospheres (MSNs) that have an extraordinary surface area, uniform surface morphology, and capacious porosity, making them an excellent substrate for the anchoring of the chromoionophoic probe,3′-{(1E,1′ E)-[(4-chloro-1,2 phenylene)bis (azaneylylidene)]-bis(methaneylylidene)}bis(2-hydroxybenzoic acid) (CPAMHP). The CPAMHP probe is highly selective and sensitive to Ni(II), enabling it to be used in naked-eye colorimetric recognition of Ni(II) ions. The MSNs provide several accessible exhibited sites for uniform anchoring of CPAMHP probe molecules, making it a viable chemical sensor even with the use of naked-eye sensing. The surface characters and structural analysis of the MSNs and CPAMHP sensor samples were examined using various techniques. The CPAMHP probe-anchored MSNs exhibit a clear and vivid color shift from pale yellow to green upon exposure to various concentrations of Ni(II) ions, with a reaction time down to approximately 1 minute. Furthermore, the MSNs can serve as a base to retrieve extremely trace amounts of Ni(II) ions, making the CPAMHP sensor a dual-functional device. The calculated limit of recognition for Ni(II) ions using the fabricated CPAMHP sensor samples is 0.318 ppb (5.43 × 10<sup>−9</sup> M). The results suggest that the proposed sensor is a promising tool for the sensitive and reliable detection of Ni(II) ions in petroleum products and for removing Ni(II) ions in electroplating wastewater; the data indicate an excellent removal of Ni (II) up to 96.8%, highlighting the high accuracy and precision of our CPAMHP sensor.</p>\",\"PeriodicalId\":16531,\"journal\":{\"name\":\"Journal of Molecular Recognition\",\"volume\":\"36 6\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Recognition\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jmr.3013\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Recognition","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jmr.3013","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Chromoionophoric probe-anchored mesoporous silica nanospheres for rapid and reliable naked-eye detection of Ni(II) ions in petroleum products and removal from electroplating wastewater
This paper presents the expansion of an optical, chemical sensor that can rapidly and reliably detect, quantify, and remove Ni(II) ions in oil products and electroplating wastewater sources. The sensor is based on mesoporous silica nanospheres (MSNs) that have an extraordinary surface area, uniform surface morphology, and capacious porosity, making them an excellent substrate for the anchoring of the chromoionophoic probe,3′-{(1E,1′ E)-[(4-chloro-1,2 phenylene)bis (azaneylylidene)]-bis(methaneylylidene)}bis(2-hydroxybenzoic acid) (CPAMHP). The CPAMHP probe is highly selective and sensitive to Ni(II), enabling it to be used in naked-eye colorimetric recognition of Ni(II) ions. The MSNs provide several accessible exhibited sites for uniform anchoring of CPAMHP probe molecules, making it a viable chemical sensor even with the use of naked-eye sensing. The surface characters and structural analysis of the MSNs and CPAMHP sensor samples were examined using various techniques. The CPAMHP probe-anchored MSNs exhibit a clear and vivid color shift from pale yellow to green upon exposure to various concentrations of Ni(II) ions, with a reaction time down to approximately 1 minute. Furthermore, the MSNs can serve as a base to retrieve extremely trace amounts of Ni(II) ions, making the CPAMHP sensor a dual-functional device. The calculated limit of recognition for Ni(II) ions using the fabricated CPAMHP sensor samples is 0.318 ppb (5.43 × 10−9 M). The results suggest that the proposed sensor is a promising tool for the sensitive and reliable detection of Ni(II) ions in petroleum products and for removing Ni(II) ions in electroplating wastewater; the data indicate an excellent removal of Ni (II) up to 96.8%, highlighting the high accuracy and precision of our CPAMHP sensor.
期刊介绍:
Journal of Molecular Recognition (JMR) publishes original research papers and reviews describing substantial advances in our understanding of molecular recognition phenomena in life sciences, covering all aspects from biochemistry, molecular biology, medicine, and biophysics. The research may employ experimental, theoretical and/or computational approaches.
The focus of the journal is on recognition phenomena involving biomolecules and their biological / biochemical partners rather than on the recognition of metal ions or inorganic compounds. Molecular recognition involves non-covalent specific interactions between two or more biological molecules, molecular aggregates, cellular modules or organelles, as exemplified by receptor-ligand, antigen-antibody, nucleic acid-protein, sugar-lectin, to mention just a few of the possible interactions. The journal invites manuscripts that aim to achieve a complete description of molecular recognition mechanisms between well-characterized biomolecules in terms of structure, dynamics and biological activity. Such studies may help the future development of new drugs and vaccines, although the experimental testing of new drugs and vaccines falls outside the scope of the journal. Manuscripts that describe the application of standard approaches and techniques to design or model new molecular entities or to describe interactions between biomolecules, but do not provide new insights into molecular recognition processes will not be considered. Similarly, manuscripts involving biomolecules uncharacterized at the sequence level (e.g. calf thymus DNA) will not be considered.