COMMD1的破坏通过促进糖酵解加速糖尿病动脉粥样硬化。

IF 2.8 4区 医学 Q3 ENDOCRINOLOGY & METABOLISM
Lili Zhang, Lihua Li, Yalan Li, Han Jiang, Zhen Sun, Guangyao Zang, Yongjiang Qian, Chen Shao, Zhongqun Wang
{"title":"COMMD1的破坏通过促进糖酵解加速糖尿病动脉粥样硬化。","authors":"Lili Zhang,&nbsp;Lihua Li,&nbsp;Yalan Li,&nbsp;Han Jiang,&nbsp;Zhen Sun,&nbsp;Guangyao Zang,&nbsp;Yongjiang Qian,&nbsp;Chen Shao,&nbsp;Zhongqun Wang","doi":"10.1177/14791641231159009","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>Diabetes will lead to serious complications, of which atherosclerosis is the most dangerous. This study aimed to explore the mechanisms of diabetic atherosclerosis.</p><p><strong>Methods: </strong>ApoE<sup>-/-</sup> mice were fed with an high-fat diet diet and injected with streptozotocin to establish an <i>in vivo</i> diabetic atherosclerotic model. RAW 264.7 cells were treated with oxidized low-density lipoprotein particles (ox-LDL) and high glucose to produce an <i>in vitro</i> diabetic atherosclerotic model.</p><p><strong>Results: </strong>In this study, we showed that diabetes promoted the progression of atherosclerosis in ApoE<sup>-/-</sup> mice and that high glucose potentiates macrophage proinflammatory activation and foam cell formation. Mechanistically, Copper metabolism MURR1 domain-containing 1(COMMD1) deficiency increased proinflammatory activation and foam cell formation, characterized by increased glycolysis, and then accelerated the process of atherosclerosis. Furthermore, 2-Deoxy-D-glucose (2-DG) reversed this effect.</p><p><strong>Conclusion: </strong>Taken together, we provided evidence that the lack of COMMD1 accelerates diabetic atherosclerosis via mediating the metabolic reprogramming of macrophages. Our study provides evidence of a protective role for COMMD1 and establishes COMMD1 as a potential therapeutic strategy in patients with diabetic atherosclerosis.</p>","PeriodicalId":11092,"journal":{"name":"Diabetes & Vascular Disease Research","volume":"20 1","pages":"14791641231159009"},"PeriodicalIF":2.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/f4/7f/10.1177_14791641231159009.PMC9941604.pdf","citationCount":"1","resultStr":"{\"title\":\"Disruption of COMMD1 accelerates diabetic atherosclerosis by promoting glycolysis.\",\"authors\":\"Lili Zhang,&nbsp;Lihua Li,&nbsp;Yalan Li,&nbsp;Han Jiang,&nbsp;Zhen Sun,&nbsp;Guangyao Zang,&nbsp;Yongjiang Qian,&nbsp;Chen Shao,&nbsp;Zhongqun Wang\",\"doi\":\"10.1177/14791641231159009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Aims: </strong>Diabetes will lead to serious complications, of which atherosclerosis is the most dangerous. This study aimed to explore the mechanisms of diabetic atherosclerosis.</p><p><strong>Methods: </strong>ApoE<sup>-/-</sup> mice were fed with an high-fat diet diet and injected with streptozotocin to establish an <i>in vivo</i> diabetic atherosclerotic model. RAW 264.7 cells were treated with oxidized low-density lipoprotein particles (ox-LDL) and high glucose to produce an <i>in vitro</i> diabetic atherosclerotic model.</p><p><strong>Results: </strong>In this study, we showed that diabetes promoted the progression of atherosclerosis in ApoE<sup>-/-</sup> mice and that high glucose potentiates macrophage proinflammatory activation and foam cell formation. Mechanistically, Copper metabolism MURR1 domain-containing 1(COMMD1) deficiency increased proinflammatory activation and foam cell formation, characterized by increased glycolysis, and then accelerated the process of atherosclerosis. Furthermore, 2-Deoxy-D-glucose (2-DG) reversed this effect.</p><p><strong>Conclusion: </strong>Taken together, we provided evidence that the lack of COMMD1 accelerates diabetic atherosclerosis via mediating the metabolic reprogramming of macrophages. Our study provides evidence of a protective role for COMMD1 and establishes COMMD1 as a potential therapeutic strategy in patients with diabetic atherosclerosis.</p>\",\"PeriodicalId\":11092,\"journal\":{\"name\":\"Diabetes & Vascular Disease Research\",\"volume\":\"20 1\",\"pages\":\"14791641231159009\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/f4/7f/10.1177_14791641231159009.PMC9941604.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diabetes & Vascular Disease Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/14791641231159009\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diabetes & Vascular Disease Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/14791641231159009","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 1

摘要

目的:糖尿病会导致严重的并发症,其中动脉粥样硬化是最危险的。本研究旨在探讨糖尿病动脉粥样硬化的发生机制。方法:采用高脂饲料喂养ApoE-/-小鼠,并注射链脲佐菌素建立糖尿病动脉粥样硬化模型。用氧化低密度脂蛋白颗粒(ox-LDL)和高糖处理RAW 264.7细胞,建立体外糖尿病动脉粥样硬化模型。结果:在本研究中,我们发现糖尿病促进ApoE-/-小鼠动脉粥样硬化的进展,高糖增强巨噬细胞的促炎激活和泡沫细胞的形成。机制上,铜代谢MURR1结构域1(COMMD1)缺乏增加了促炎激活和泡沫细胞的形成,表现为糖酵解增加,从而加速动脉粥样硬化的进程。此外,2-脱氧- d -葡萄糖(2-DG)逆转了这种作用。结论:综上所述,我们提供的证据表明COMMD1的缺乏通过介导巨噬细胞的代谢重编程加速了糖尿病动脉粥样硬化。我们的研究提供了COMMD1保护作用的证据,并确立了COMMD1作为糖尿病动脉粥样硬化患者的潜在治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Disruption of COMMD1 accelerates diabetic atherosclerosis by promoting glycolysis.

Disruption of COMMD1 accelerates diabetic atherosclerosis by promoting glycolysis.

Disruption of COMMD1 accelerates diabetic atherosclerosis by promoting glycolysis.

Disruption of COMMD1 accelerates diabetic atherosclerosis by promoting glycolysis.

Aims: Diabetes will lead to serious complications, of which atherosclerosis is the most dangerous. This study aimed to explore the mechanisms of diabetic atherosclerosis.

Methods: ApoE-/- mice were fed with an high-fat diet diet and injected with streptozotocin to establish an in vivo diabetic atherosclerotic model. RAW 264.7 cells were treated with oxidized low-density lipoprotein particles (ox-LDL) and high glucose to produce an in vitro diabetic atherosclerotic model.

Results: In this study, we showed that diabetes promoted the progression of atherosclerosis in ApoE-/- mice and that high glucose potentiates macrophage proinflammatory activation and foam cell formation. Mechanistically, Copper metabolism MURR1 domain-containing 1(COMMD1) deficiency increased proinflammatory activation and foam cell formation, characterized by increased glycolysis, and then accelerated the process of atherosclerosis. Furthermore, 2-Deoxy-D-glucose (2-DG) reversed this effect.

Conclusion: Taken together, we provided evidence that the lack of COMMD1 accelerates diabetic atherosclerosis via mediating the metabolic reprogramming of macrophages. Our study provides evidence of a protective role for COMMD1 and establishes COMMD1 as a potential therapeutic strategy in patients with diabetic atherosclerosis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Diabetes & Vascular Disease Research
Diabetes & Vascular Disease Research ENDOCRINOLOGY & METABOLISM-PERIPHERAL VASCULAR DISEASE
CiteScore
4.40
自引率
0.00%
发文量
33
审稿时长
>12 weeks
期刊介绍: Diabetes & Vascular Disease Research is the first international peer-reviewed journal to unite diabetes and vascular disease in a single title. The journal publishes original papers, research letters and reviews. This journal is a member of the Committee on Publication Ethics (COPE)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信