Manlin Lang, Ping Liang, Huiming Shen, Hang Li, Ning Yang, Bo Chen, Yixu Chen, Hong Ding, Weiping Yang, Xiaohui Ji, Ping Zhou, Ligang Cui, Jiandong Wang, Wentong Xu, Xiuqin Ye, Zhixing Liu, Yu Yang, Tianci Wei, Hui Wang, Yuanyuan Yan, Changjun Wu, Yiyun Wu, Jingwen Shi, Yaxi Wang, Xiuxia Fang, Ran Li, Jie Yu
{"title":"全氟丁烷增强超声造影和多参数MRI对乳腺癌的正面比较:一项前瞻性、多中心研究","authors":"Manlin Lang, Ping Liang, Huiming Shen, Hang Li, Ning Yang, Bo Chen, Yixu Chen, Hong Ding, Weiping Yang, Xiaohui Ji, Ping Zhou, Ligang Cui, Jiandong Wang, Wentong Xu, Xiuqin Ye, Zhixing Liu, Yu Yang, Tianci Wei, Hui Wang, Yuanyuan Yan, Changjun Wu, Yiyun Wu, Jingwen Shi, Yaxi Wang, Xiuxia Fang, Ran Li, Jie Yu","doi":"10.1186/s13058-023-01650-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Multiparametric magnetic resonance imaging (MP-MRI) has high sensitivity for diagnosing breast cancers but cannot always be used as a routine diagnostic tool. The present study aimed to evaluate whether the diagnostic performance of perfluorobutane (PFB) contrast-enhanced ultrasound (CEUS) is similar to that of MP-MRI in breast cancer and whether combining the two methods would enhance diagnostic efficiency.</p><p><strong>Patients and methods: </strong>This was a head-to-head, prospective, multicenter study. Patients with breast lesions diagnosed by US as Breast Imaging Reporting and Data System (BI-RADS) categories 3, 4, and 5 underwent both PFB-CEUS and MP-MRI scans. On-site operators and three reviewers categorized the BI-RADS of all lesions on two images. Logistic-bootstrap 1000-sample analysis and cross-validation were used to construct PFB-CEUS, MP-MRI, and hybrid (PFB-CEUS + MP-MRI) models to distinguish breast lesions.</p><p><strong>Results: </strong>In total, 179 women with 186 breast lesions were evaluated from 17 centers in China. The area under the receiver operating characteristic curve (AUC) for the PFB-CEUS model to diagnose breast cancer (0.89; 95% confidence interval [CI] 0.74, 0.97) was similar to that of the MP-MRI model (0.89; 95% CI 0.73, 0.97) (P = 0.85). The AUC of the hybrid model (0.92, 95% CI 0.77, 0.98) did not show a statistical advantage over the PFB-CEUS and MP-MRI models (P = 0.29 and 0.40, respectively). However, 90.3% false-positive and 66.7% false-negative results of PFB-CEUS radiologists and 90.5% false-positive and 42.8% false-negative results of MP-MRI radiologists could be corrected by the hybrid model. Three dynamic nomograms of PFB-CEUS, MP-MRI and hybrid models to diagnose breast cancer are freely available online.</p><p><strong>Conclusions: </strong>PFB-CEUS can be used in the differential diagnosis of breast cancer with comparable performance to MP-MRI and with less time consumption. Using PFB-CEUS and MP-MRI as joint diagnostics could further strengthen the diagnostic ability. Trial registration Clinicaltrials.gov; NCT04657328. Registered 26 September 2020. IRB number 2020-300 was approved in Chinese PLA General Hospital. Every patient signed a written informed consent form in each center.</p>","PeriodicalId":9283,"journal":{"name":"Breast Cancer Research : BCR","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10228005/pdf/","citationCount":"0","resultStr":"{\"title\":\"Head-to-head comparison of perfluorobutane contrast-enhanced US and multiparametric MRI for breast cancer: a prospective, multicenter study.\",\"authors\":\"Manlin Lang, Ping Liang, Huiming Shen, Hang Li, Ning Yang, Bo Chen, Yixu Chen, Hong Ding, Weiping Yang, Xiaohui Ji, Ping Zhou, Ligang Cui, Jiandong Wang, Wentong Xu, Xiuqin Ye, Zhixing Liu, Yu Yang, Tianci Wei, Hui Wang, Yuanyuan Yan, Changjun Wu, Yiyun Wu, Jingwen Shi, Yaxi Wang, Xiuxia Fang, Ran Li, Jie Yu\",\"doi\":\"10.1186/s13058-023-01650-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Multiparametric magnetic resonance imaging (MP-MRI) has high sensitivity for diagnosing breast cancers but cannot always be used as a routine diagnostic tool. The present study aimed to evaluate whether the diagnostic performance of perfluorobutane (PFB) contrast-enhanced ultrasound (CEUS) is similar to that of MP-MRI in breast cancer and whether combining the two methods would enhance diagnostic efficiency.</p><p><strong>Patients and methods: </strong>This was a head-to-head, prospective, multicenter study. Patients with breast lesions diagnosed by US as Breast Imaging Reporting and Data System (BI-RADS) categories 3, 4, and 5 underwent both PFB-CEUS and MP-MRI scans. On-site operators and three reviewers categorized the BI-RADS of all lesions on two images. Logistic-bootstrap 1000-sample analysis and cross-validation were used to construct PFB-CEUS, MP-MRI, and hybrid (PFB-CEUS + MP-MRI) models to distinguish breast lesions.</p><p><strong>Results: </strong>In total, 179 women with 186 breast lesions were evaluated from 17 centers in China. The area under the receiver operating characteristic curve (AUC) for the PFB-CEUS model to diagnose breast cancer (0.89; 95% confidence interval [CI] 0.74, 0.97) was similar to that of the MP-MRI model (0.89; 95% CI 0.73, 0.97) (P = 0.85). The AUC of the hybrid model (0.92, 95% CI 0.77, 0.98) did not show a statistical advantage over the PFB-CEUS and MP-MRI models (P = 0.29 and 0.40, respectively). However, 90.3% false-positive and 66.7% false-negative results of PFB-CEUS radiologists and 90.5% false-positive and 42.8% false-negative results of MP-MRI radiologists could be corrected by the hybrid model. Three dynamic nomograms of PFB-CEUS, MP-MRI and hybrid models to diagnose breast cancer are freely available online.</p><p><strong>Conclusions: </strong>PFB-CEUS can be used in the differential diagnosis of breast cancer with comparable performance to MP-MRI and with less time consumption. Using PFB-CEUS and MP-MRI as joint diagnostics could further strengthen the diagnostic ability. Trial registration Clinicaltrials.gov; NCT04657328. Registered 26 September 2020. IRB number 2020-300 was approved in Chinese PLA General Hospital. Every patient signed a written informed consent form in each center.</p>\",\"PeriodicalId\":9283,\"journal\":{\"name\":\"Breast Cancer Research : BCR\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10228005/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Breast Cancer Research : BCR\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s13058-023-01650-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Breast Cancer Research : BCR","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13058-023-01650-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Head-to-head comparison of perfluorobutane contrast-enhanced US and multiparametric MRI for breast cancer: a prospective, multicenter study.
Background: Multiparametric magnetic resonance imaging (MP-MRI) has high sensitivity for diagnosing breast cancers but cannot always be used as a routine diagnostic tool. The present study aimed to evaluate whether the diagnostic performance of perfluorobutane (PFB) contrast-enhanced ultrasound (CEUS) is similar to that of MP-MRI in breast cancer and whether combining the two methods would enhance diagnostic efficiency.
Patients and methods: This was a head-to-head, prospective, multicenter study. Patients with breast lesions diagnosed by US as Breast Imaging Reporting and Data System (BI-RADS) categories 3, 4, and 5 underwent both PFB-CEUS and MP-MRI scans. On-site operators and three reviewers categorized the BI-RADS of all lesions on two images. Logistic-bootstrap 1000-sample analysis and cross-validation were used to construct PFB-CEUS, MP-MRI, and hybrid (PFB-CEUS + MP-MRI) models to distinguish breast lesions.
Results: In total, 179 women with 186 breast lesions were evaluated from 17 centers in China. The area under the receiver operating characteristic curve (AUC) for the PFB-CEUS model to diagnose breast cancer (0.89; 95% confidence interval [CI] 0.74, 0.97) was similar to that of the MP-MRI model (0.89; 95% CI 0.73, 0.97) (P = 0.85). The AUC of the hybrid model (0.92, 95% CI 0.77, 0.98) did not show a statistical advantage over the PFB-CEUS and MP-MRI models (P = 0.29 and 0.40, respectively). However, 90.3% false-positive and 66.7% false-negative results of PFB-CEUS radiologists and 90.5% false-positive and 42.8% false-negative results of MP-MRI radiologists could be corrected by the hybrid model. Three dynamic nomograms of PFB-CEUS, MP-MRI and hybrid models to diagnose breast cancer are freely available online.
Conclusions: PFB-CEUS can be used in the differential diagnosis of breast cancer with comparable performance to MP-MRI and with less time consumption. Using PFB-CEUS and MP-MRI as joint diagnostics could further strengthen the diagnostic ability. Trial registration Clinicaltrials.gov; NCT04657328. Registered 26 September 2020. IRB number 2020-300 was approved in Chinese PLA General Hospital. Every patient signed a written informed consent form in each center.