{"title":"通过抗体依赖细胞毒性靶向衰老成纤维细胞标志物HTR2A的新衰老方法的发展。","authors":"Kento Takaya, Toru Asou, Kazuo Kishi","doi":"10.1089/rej.2023.0020","DOIUrl":null,"url":null,"abstract":"<p><p>Abnormal remodeling of collagen and extracellular matrix caused by the accumulation of senescent fibroblasts in the dermis is the most likely cause of skin aging. Therefore, the application of \"senolysis,\" in which only senescent cells are cleared from the body, has a potential in the development of antiaging treatments for skin. However, markers that label senescent fibroblasts only reflect the state of senescence, and it is important to develop markers as therapeutic targets to aid senolysis application. We investigated the potential of serotonin 2A receptor (HTR2A), which is involved in melanin production in response to ultraviolet light, as a senescent cell marker. The results showed that HTR2A is upregulated in aging dermal fibroblasts but is expressed at low levels in proliferating young cells. Flow cytometry demonstrated the presence of many HTR2A-positive cells in the aging cell population and few in the young cells. Furthermore, antibody-dependent cytotoxicity assays revealed that HTR2A preferentially sensitizes senescent fibroblasts and specifically damages only senescent cells by natural killer cells that recognize it. In conclusion, selective labeling of the novel senescent cell marker, HTR2A, could preferentially eliminate senescent cells and may contribute to the future development of novel skin senolysis approaches.</p>","PeriodicalId":20979,"journal":{"name":"Rejuvenation research","volume":"26 4","pages":"147-158"},"PeriodicalIF":2.2000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of a Novel Senolysis Approach Targeting the Senescent Fibroblast Marker HTR2A via Antibody-Dependent Cellular Cytotoxicity.\",\"authors\":\"Kento Takaya, Toru Asou, Kazuo Kishi\",\"doi\":\"10.1089/rej.2023.0020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Abnormal remodeling of collagen and extracellular matrix caused by the accumulation of senescent fibroblasts in the dermis is the most likely cause of skin aging. Therefore, the application of \\\"senolysis,\\\" in which only senescent cells are cleared from the body, has a potential in the development of antiaging treatments for skin. However, markers that label senescent fibroblasts only reflect the state of senescence, and it is important to develop markers as therapeutic targets to aid senolysis application. We investigated the potential of serotonin 2A receptor (HTR2A), which is involved in melanin production in response to ultraviolet light, as a senescent cell marker. The results showed that HTR2A is upregulated in aging dermal fibroblasts but is expressed at low levels in proliferating young cells. Flow cytometry demonstrated the presence of many HTR2A-positive cells in the aging cell population and few in the young cells. Furthermore, antibody-dependent cytotoxicity assays revealed that HTR2A preferentially sensitizes senescent fibroblasts and specifically damages only senescent cells by natural killer cells that recognize it. In conclusion, selective labeling of the novel senescent cell marker, HTR2A, could preferentially eliminate senescent cells and may contribute to the future development of novel skin senolysis approaches.</p>\",\"PeriodicalId\":20979,\"journal\":{\"name\":\"Rejuvenation research\",\"volume\":\"26 4\",\"pages\":\"147-158\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rejuvenation research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/rej.2023.0020\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GERIATRICS & GERONTOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rejuvenation research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/rej.2023.0020","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
Development of a Novel Senolysis Approach Targeting the Senescent Fibroblast Marker HTR2A via Antibody-Dependent Cellular Cytotoxicity.
Abnormal remodeling of collagen and extracellular matrix caused by the accumulation of senescent fibroblasts in the dermis is the most likely cause of skin aging. Therefore, the application of "senolysis," in which only senescent cells are cleared from the body, has a potential in the development of antiaging treatments for skin. However, markers that label senescent fibroblasts only reflect the state of senescence, and it is important to develop markers as therapeutic targets to aid senolysis application. We investigated the potential of serotonin 2A receptor (HTR2A), which is involved in melanin production in response to ultraviolet light, as a senescent cell marker. The results showed that HTR2A is upregulated in aging dermal fibroblasts but is expressed at low levels in proliferating young cells. Flow cytometry demonstrated the presence of many HTR2A-positive cells in the aging cell population and few in the young cells. Furthermore, antibody-dependent cytotoxicity assays revealed that HTR2A preferentially sensitizes senescent fibroblasts and specifically damages only senescent cells by natural killer cells that recognize it. In conclusion, selective labeling of the novel senescent cell marker, HTR2A, could preferentially eliminate senescent cells and may contribute to the future development of novel skin senolysis approaches.
期刊介绍:
Rejuvenation Research publishes cutting-edge, peer-reviewed research on rejuvenation therapies in the laboratory and the clinic. The Journal focuses on key explorations and advances that may ultimately contribute to slowing or reversing the aging process, and covers topics such as cardiovascular aging, DNA damage and repair, cloning, and cell immortalization and senescence.
Rejuvenation Research coverage includes:
Cell immortalization and senescence
Pluripotent stem cells
DNA damage/repair
Gene targeting, gene therapy, and genomics
Growth factors and nutrient supply/sensing
Immunosenescence
Comparative biology of aging
Tissue engineering
Late-life pathologies (cardiovascular, neurodegenerative and others)
Public policy and social context.