Huansheng Zhou, Hui Wang, Xiaohan Liu, Bei Liu, Yanci Che, Rendong Han
{"title":"蜕膜间质细胞中miR-92a下调通过促进巨噬细胞极化抑制滋养细胞迁移能力","authors":"Huansheng Zhou, Hui Wang, Xiaohan Liu, Bei Liu, Yanci Che, Rendong Han","doi":"10.1089/dna.2022.0510","DOIUrl":null,"url":null,"abstract":"<p><p>Preeclampsia (PE) is a severe pregnancy complication that accounts for about 14% of maternal deaths. Its clinical manifestations commonly include hypertension and proteinuria. However, it is largely limited in understanding its pathogenetic mechanism. In this study, we used bioinformatics to compare differential gene expressions in decidual stromal cells from PE patients and healthy donors. The result indicated that higher levels of CCL5 and CXCL2 were expressed in decidual stromal cells of PE patients compared with healthy pregnancy. The bioinformatics analysis confirmed that decidual stromal cells derived from PE patients expressed significantly lower miR-92a compared with those derived from healthy donors. Transfection of miR-92a inhibitors upregulated IL-6, CXCL2, CXCL3, CCL5, and CXCL8 expressions in decidual stromal cells. Luciferase activity assay confirmed that miR-92a directly targeted the mRNA of IRF3 whose overexpression could promote the secretion of cytokines. The flow cytometric analysis demonstrated that M1 macrophage infiltration was higher in the placentas of PE patients than in those of healthy donors. We also observed that after transfection of miR-92a inhibitor, condition medium (CM) derived from decidual stromal cells significantly promoted M1 polarization of macrophages. In addition, the transwell migration assay and flow cytometric analysis together showed that decidual stromal cell-derived CM induced macrophages to suppress the trophoblast migration and proliferation. Taken together, our result indicates that downregulation of miR-92a in decidual stromal cells promotes the macrophage polarization and suppresses the trophoblast migration and proliferation.</p>","PeriodicalId":11248,"journal":{"name":"DNA and cell biology","volume":"42 8","pages":"507-514"},"PeriodicalIF":2.6000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Downregulation of miR-92a in Decidual Stromal Cells Suppresses Migration Ability of Trophoblasts by Promoting Macrophage Polarization.\",\"authors\":\"Huansheng Zhou, Hui Wang, Xiaohan Liu, Bei Liu, Yanci Che, Rendong Han\",\"doi\":\"10.1089/dna.2022.0510\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Preeclampsia (PE) is a severe pregnancy complication that accounts for about 14% of maternal deaths. Its clinical manifestations commonly include hypertension and proteinuria. However, it is largely limited in understanding its pathogenetic mechanism. In this study, we used bioinformatics to compare differential gene expressions in decidual stromal cells from PE patients and healthy donors. The result indicated that higher levels of CCL5 and CXCL2 were expressed in decidual stromal cells of PE patients compared with healthy pregnancy. The bioinformatics analysis confirmed that decidual stromal cells derived from PE patients expressed significantly lower miR-92a compared with those derived from healthy donors. Transfection of miR-92a inhibitors upregulated IL-6, CXCL2, CXCL3, CCL5, and CXCL8 expressions in decidual stromal cells. Luciferase activity assay confirmed that miR-92a directly targeted the mRNA of IRF3 whose overexpression could promote the secretion of cytokines. The flow cytometric analysis demonstrated that M1 macrophage infiltration was higher in the placentas of PE patients than in those of healthy donors. We also observed that after transfection of miR-92a inhibitor, condition medium (CM) derived from decidual stromal cells significantly promoted M1 polarization of macrophages. In addition, the transwell migration assay and flow cytometric analysis together showed that decidual stromal cell-derived CM induced macrophages to suppress the trophoblast migration and proliferation. Taken together, our result indicates that downregulation of miR-92a in decidual stromal cells promotes the macrophage polarization and suppresses the trophoblast migration and proliferation.</p>\",\"PeriodicalId\":11248,\"journal\":{\"name\":\"DNA and cell biology\",\"volume\":\"42 8\",\"pages\":\"507-514\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DNA and cell biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1089/dna.2022.0510\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DNA and cell biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/dna.2022.0510","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Downregulation of miR-92a in Decidual Stromal Cells Suppresses Migration Ability of Trophoblasts by Promoting Macrophage Polarization.
Preeclampsia (PE) is a severe pregnancy complication that accounts for about 14% of maternal deaths. Its clinical manifestations commonly include hypertension and proteinuria. However, it is largely limited in understanding its pathogenetic mechanism. In this study, we used bioinformatics to compare differential gene expressions in decidual stromal cells from PE patients and healthy donors. The result indicated that higher levels of CCL5 and CXCL2 were expressed in decidual stromal cells of PE patients compared with healthy pregnancy. The bioinformatics analysis confirmed that decidual stromal cells derived from PE patients expressed significantly lower miR-92a compared with those derived from healthy donors. Transfection of miR-92a inhibitors upregulated IL-6, CXCL2, CXCL3, CCL5, and CXCL8 expressions in decidual stromal cells. Luciferase activity assay confirmed that miR-92a directly targeted the mRNA of IRF3 whose overexpression could promote the secretion of cytokines. The flow cytometric analysis demonstrated that M1 macrophage infiltration was higher in the placentas of PE patients than in those of healthy donors. We also observed that after transfection of miR-92a inhibitor, condition medium (CM) derived from decidual stromal cells significantly promoted M1 polarization of macrophages. In addition, the transwell migration assay and flow cytometric analysis together showed that decidual stromal cell-derived CM induced macrophages to suppress the trophoblast migration and proliferation. Taken together, our result indicates that downregulation of miR-92a in decidual stromal cells promotes the macrophage polarization and suppresses the trophoblast migration and proliferation.
期刊介绍:
DNA and Cell Biology delivers authoritative, peer-reviewed research on all aspects of molecular and cellular biology, with a unique focus on combining mechanistic and clinical studies to drive the field forward.
DNA and Cell Biology coverage includes:
Gene Structure, Function, and Regulation
Gene regulation
Molecular mechanisms of cell activation
Mechanisms of transcriptional, translational, or epigenetic control of gene expression
Molecular Medicine
Molecular pathogenesis
Genetic approaches to cancer and autoimmune diseases
Translational studies in cell and molecular biology
Cellular Organelles
Autophagy
Apoptosis
P bodies
Peroxisosomes
Protein Biosynthesis and Degradation
Regulation of protein synthesis
Post-translational modifications
Control of degradation
Cell-Autonomous Inflammation and Host Cell Response to Infection
Responses to cytokines and other physiological mediators
Evasive pathways of pathogens.