{"title":"利用相似性测量和图论将药物、靶点和基因表达式联系起来,揭示代谢综合征的奥秘。","authors":"Alwaz Zafar, Bilal Wajid, Ans Shabbir, Fahim Gohar Awan, Momina Ahsan, Sarfraz Ahmad, Imran Wajid, Faria Anwar, Fazeelat Mazhar","doi":"10.2174/1573409920666230817101913","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims and objectives: </strong>Metabolic syndrome (MetS) is a group of metabolic disorders that includes obesity in combination with at least any two of the following conditions, i.e., insulin resistance, high blood pressure, low HDL cholesterol, and high triglycerides level. Treatment of this syndrome is challenging because of the multiple interlinked factors that lead to increased risks of type-2 diabetes and cardiovascular diseases. This study aims to conduct extensive <i>in silico</i> analysis to (i) find central genes that play a pivotal role in MetS and (ii) propose suitable drugs for therapy. Our objective is to first create a drug-disease network and then identify novel genes in the drug-disease network with strong associations to drug targets, which can help in increasing the therapeutical effects of different drugs. In the future, these novel genes can be used to calculate drug synergy and propose new drugs for the effective treatment of MetS.</p><p><strong>Methods: </strong>For this purpose, we (i) investigated associated drugs and pathways for MetS, (ii) employed eight different similarity measures to construct eight gene regulatory networks, (iii) chose an optimal network, where a maximum number of drug targets were central, (iv) determined central genes exhibiting strong associations with these drug targets and associated disease-causing pathways, and lastly (v) employed these candidate genes to propose suitable drugs.</p><p><strong>Results: </strong>Our results indicated (i) a novel drug-disease network complex, with (ii) novel genes associated with MetS.</p><p><strong>Conclusion: </strong>Our developed drug-disease network complex closely represents MetS with associated novel findings and markers for an improved understanding of the disease and suggested therapy.</p>","PeriodicalId":10886,"journal":{"name":"Current computer-aided drug design","volume":" ","pages":"773-783"},"PeriodicalIF":1.5000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unearthing Insights into Metabolic Syndrome by Linking Drugs, Targets, and Gene Expressions Using Similarity Measures and Graph Theory.\",\"authors\":\"Alwaz Zafar, Bilal Wajid, Ans Shabbir, Fahim Gohar Awan, Momina Ahsan, Sarfraz Ahmad, Imran Wajid, Faria Anwar, Fazeelat Mazhar\",\"doi\":\"10.2174/1573409920666230817101913\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Aims and objectives: </strong>Metabolic syndrome (MetS) is a group of metabolic disorders that includes obesity in combination with at least any two of the following conditions, i.e., insulin resistance, high blood pressure, low HDL cholesterol, and high triglycerides level. Treatment of this syndrome is challenging because of the multiple interlinked factors that lead to increased risks of type-2 diabetes and cardiovascular diseases. This study aims to conduct extensive <i>in silico</i> analysis to (i) find central genes that play a pivotal role in MetS and (ii) propose suitable drugs for therapy. Our objective is to first create a drug-disease network and then identify novel genes in the drug-disease network with strong associations to drug targets, which can help in increasing the therapeutical effects of different drugs. In the future, these novel genes can be used to calculate drug synergy and propose new drugs for the effective treatment of MetS.</p><p><strong>Methods: </strong>For this purpose, we (i) investigated associated drugs and pathways for MetS, (ii) employed eight different similarity measures to construct eight gene regulatory networks, (iii) chose an optimal network, where a maximum number of drug targets were central, (iv) determined central genes exhibiting strong associations with these drug targets and associated disease-causing pathways, and lastly (v) employed these candidate genes to propose suitable drugs.</p><p><strong>Results: </strong>Our results indicated (i) a novel drug-disease network complex, with (ii) novel genes associated with MetS.</p><p><strong>Conclusion: </strong>Our developed drug-disease network complex closely represents MetS with associated novel findings and markers for an improved understanding of the disease and suggested therapy.</p>\",\"PeriodicalId\":10886,\"journal\":{\"name\":\"Current computer-aided drug design\",\"volume\":\" \",\"pages\":\"773-783\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current computer-aided drug design\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/1573409920666230817101913\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current computer-aided drug design","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/1573409920666230817101913","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Unearthing Insights into Metabolic Syndrome by Linking Drugs, Targets, and Gene Expressions Using Similarity Measures and Graph Theory.
Aims and objectives: Metabolic syndrome (MetS) is a group of metabolic disorders that includes obesity in combination with at least any two of the following conditions, i.e., insulin resistance, high blood pressure, low HDL cholesterol, and high triglycerides level. Treatment of this syndrome is challenging because of the multiple interlinked factors that lead to increased risks of type-2 diabetes and cardiovascular diseases. This study aims to conduct extensive in silico analysis to (i) find central genes that play a pivotal role in MetS and (ii) propose suitable drugs for therapy. Our objective is to first create a drug-disease network and then identify novel genes in the drug-disease network with strong associations to drug targets, which can help in increasing the therapeutical effects of different drugs. In the future, these novel genes can be used to calculate drug synergy and propose new drugs for the effective treatment of MetS.
Methods: For this purpose, we (i) investigated associated drugs and pathways for MetS, (ii) employed eight different similarity measures to construct eight gene regulatory networks, (iii) chose an optimal network, where a maximum number of drug targets were central, (iv) determined central genes exhibiting strong associations with these drug targets and associated disease-causing pathways, and lastly (v) employed these candidate genes to propose suitable drugs.
Results: Our results indicated (i) a novel drug-disease network complex, with (ii) novel genes associated with MetS.
Conclusion: Our developed drug-disease network complex closely represents MetS with associated novel findings and markers for an improved understanding of the disease and suggested therapy.
期刊介绍:
Aims & Scope
Current Computer-Aided Drug Design aims to publish all the latest developments in drug design based on computational techniques. The field of computer-aided drug design has had extensive impact in the area of drug design.
Current Computer-Aided Drug Design is an essential journal for all medicinal chemists who wish to be kept informed and up-to-date with all the latest and important developments in computer-aided methodologies and their applications in drug discovery. Each issue contains a series of timely, in-depth reviews, original research articles and letter articles written by leaders in the field, covering a range of computational techniques for drug design, screening, ADME studies, theoretical chemistry; computational chemistry; computer and molecular graphics; molecular modeling; protein engineering; drug design; expert systems; general structure-property relationships; molecular dynamics; chemical database development and usage etc., providing excellent rationales for drug development.