稳定突变对膜表达 HIV-1 包膜糖蛋白抗原谱和糖基化的影响。

IF 6.7 1区 医学 Q1 Immunology and Microbiology
PLoS Pathogens Pub Date : 2023-08-07 eCollection Date: 2023-08-01 DOI:10.1371/journal.ppat.1011452
Tommy Tong, Alessio D'Addabbo, Jiamin Xu, Himanshi Chawla, Albert Nguyen, Paola Ochoa, Max Crispin, James M Binley
{"title":"稳定突变对膜表达 HIV-1 包膜糖蛋白抗原谱和糖基化的影响。","authors":"Tommy Tong, Alessio D'Addabbo, Jiamin Xu, Himanshi Chawla, Albert Nguyen, Paola Ochoa, Max Crispin, James M Binley","doi":"10.1371/journal.ppat.1011452","DOIUrl":null,"url":null,"abstract":"<p><p>Recent HIV-1 vaccine development has centered on \"near native\" soluble envelope glycoprotein (Env) trimers that are artificially stabilized laterally (between protomers) and apically (between gp120 and gp41). These mutations have been leveraged for use in membrane-expressed Env mRNA vaccines, although their effects in this context are unclear. To address this question, we used virus-like particle (VLP) produced in 293T cells. Uncleaved (UNC) trimers were laterally unstable upon gentle lysis from membranes. However, gp120/gp41 processing improved lateral stability. Due to inefficient gp120/gp41 processing, UNC is incorporated into VLPs. A linker between gp120 and gp41 neither improved trimer stability nor its antigenic profile. An artificially introduced enterokinase cleavage site allowed post-expression gp120/gp41 processing, concomitantly increasing trimer stability. Gp41 N-helix mutations I559P and NT1-5 imparted lateral trimer stability, but also reduced gp120/gp41 processing and/or impacted V2 apex and interface NAb binding. I559P consistently reduced recognition by HIV+ human plasmas, further supporting antigenic differences. Mutations in the gp120 bridging sheet failed to stabilize membrane trimers in a pre-fusion conformation, and also reduced gp120/gp41 processing and exposed non-neutralizing epitopes. Reduced glycan maturation and increased sequon skipping were common side effects of these mutations. In some cases, this may be due to increased rigidity which limits access to glycan processing enzymes. In contrast, viral gp120 did not show glycan skipping. A second, minor species of high mannose gp160 was unaffected by any mutations and instead bypasses normal folding and glycan maturation. Including the full gp41 cytoplasmic tail led to markedly reduced gp120/gp41 processing and greatly increased the proportion of high mannose gp160. Remarkably, monoclonal antibodies were unable to bind to this high mannose gp160 in native protein gels. Overall, our findings suggest caution in leveraging stabilizing mutations in nucleic acid-based immunogens to ensure they impart valuable membrane trimer phenotypes for vaccine use.</p>","PeriodicalId":20178,"journal":{"name":"PLoS Pathogens","volume":null,"pages":null},"PeriodicalIF":6.7000,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10434953/pdf/","citationCount":"0","resultStr":"{\"title\":\"Impact of stabilizing mutations on the antigenic profile and glycosylation of membrane-expressed HIV-1 envelope glycoprotein.\",\"authors\":\"Tommy Tong, Alessio D'Addabbo, Jiamin Xu, Himanshi Chawla, Albert Nguyen, Paola Ochoa, Max Crispin, James M Binley\",\"doi\":\"10.1371/journal.ppat.1011452\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recent HIV-1 vaccine development has centered on \\\"near native\\\" soluble envelope glycoprotein (Env) trimers that are artificially stabilized laterally (between protomers) and apically (between gp120 and gp41). These mutations have been leveraged for use in membrane-expressed Env mRNA vaccines, although their effects in this context are unclear. To address this question, we used virus-like particle (VLP) produced in 293T cells. Uncleaved (UNC) trimers were laterally unstable upon gentle lysis from membranes. However, gp120/gp41 processing improved lateral stability. Due to inefficient gp120/gp41 processing, UNC is incorporated into VLPs. A linker between gp120 and gp41 neither improved trimer stability nor its antigenic profile. An artificially introduced enterokinase cleavage site allowed post-expression gp120/gp41 processing, concomitantly increasing trimer stability. Gp41 N-helix mutations I559P and NT1-5 imparted lateral trimer stability, but also reduced gp120/gp41 processing and/or impacted V2 apex and interface NAb binding. I559P consistently reduced recognition by HIV+ human plasmas, further supporting antigenic differences. Mutations in the gp120 bridging sheet failed to stabilize membrane trimers in a pre-fusion conformation, and also reduced gp120/gp41 processing and exposed non-neutralizing epitopes. Reduced glycan maturation and increased sequon skipping were common side effects of these mutations. In some cases, this may be due to increased rigidity which limits access to glycan processing enzymes. In contrast, viral gp120 did not show glycan skipping. A second, minor species of high mannose gp160 was unaffected by any mutations and instead bypasses normal folding and glycan maturation. Including the full gp41 cytoplasmic tail led to markedly reduced gp120/gp41 processing and greatly increased the proportion of high mannose gp160. Remarkably, monoclonal antibodies were unable to bind to this high mannose gp160 in native protein gels. Overall, our findings suggest caution in leveraging stabilizing mutations in nucleic acid-based immunogens to ensure they impart valuable membrane trimer phenotypes for vaccine use.</p>\",\"PeriodicalId\":20178,\"journal\":{\"name\":\"PLoS Pathogens\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2023-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10434953/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS Pathogens\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.ppat.1011452\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/8/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"Immunology and Microbiology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Pathogens","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1371/journal.ppat.1011452","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Immunology and Microbiology","Score":null,"Total":0}
引用次数: 0

摘要

最近的 HIV-1 疫苗开发主要集中在 "接近原生 "的可溶性包膜糖蛋白(Env)三聚体上,这些三聚体在侧面(原体之间)和顶部(gp120 和 gp41 之间)被人为地稳定下来。这些突变已被用于膜表达 Env mRNA 疫苗,但它们在这种情况下的效果尚不清楚。为了解决这个问题,我们使用了在 293T 细胞中产生的病毒样颗粒(VLP)。未被破坏的三聚体(UNC)在从膜上轻轻裂解时横向不稳定。然而,经过 gp120/gp41 处理后,横向稳定性得到改善。由于 gp120/gp41 的处理效率不高,UNC 被整合到了 VLPs 中。gp120 和 gp41 之间的连接体既不能提高三聚体的稳定性,也不能改善其抗原特征。人工引入的肠激酶裂解位点允许表达后的 gp120/gp41 处理,同时提高了三聚体的稳定性。Gp41 N-螺旋突变 I559P 和 NT1-5 带来了横向三聚体稳定性,但也减少了 gp120/gp41 处理和/或影响了 V2 顶点和界面 NAb 结合。I559P 持续降低了 HIV+ 人类血浆的识别率,进一步证明了抗原差异。gp120 桥接片的突变未能将膜三聚体稳定在融合前构象中,还降低了 gp120/gp41 的处理能力,并暴露了非中和表位。聚糖成熟度降低和序列跳越增加是这些突变的常见副作用。在某些情况下,这可能是由于刚性增加限制了糖蛋白加工酶的进入。与此相反,病毒 gp120 并未出现糖跳。第二种次要的高甘露糖 gp160 没有受到任何突变的影响,而是绕过了正常的折叠和聚糖成熟过程。加入完整的 gp41 胞质尾会导致 gp120/gp41 处理过程明显减少,并大大增加了高甘露糖 gp160 的比例。值得注意的是,在原生蛋白凝胶中,单克隆抗体无法与这种高甘露糖 gp160 结合。总之,我们的研究结果表明,在利用基于核酸的免疫原中的稳定突变以确保它们赋予疫苗使用的有价值的膜三聚体表型时要谨慎。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Impact of stabilizing mutations on the antigenic profile and glycosylation of membrane-expressed HIV-1 envelope glycoprotein.

Impact of stabilizing mutations on the antigenic profile and glycosylation of membrane-expressed HIV-1 envelope glycoprotein.

Impact of stabilizing mutations on the antigenic profile and glycosylation of membrane-expressed HIV-1 envelope glycoprotein.

Impact of stabilizing mutations on the antigenic profile and glycosylation of membrane-expressed HIV-1 envelope glycoprotein.

Recent HIV-1 vaccine development has centered on "near native" soluble envelope glycoprotein (Env) trimers that are artificially stabilized laterally (between protomers) and apically (between gp120 and gp41). These mutations have been leveraged for use in membrane-expressed Env mRNA vaccines, although their effects in this context are unclear. To address this question, we used virus-like particle (VLP) produced in 293T cells. Uncleaved (UNC) trimers were laterally unstable upon gentle lysis from membranes. However, gp120/gp41 processing improved lateral stability. Due to inefficient gp120/gp41 processing, UNC is incorporated into VLPs. A linker between gp120 and gp41 neither improved trimer stability nor its antigenic profile. An artificially introduced enterokinase cleavage site allowed post-expression gp120/gp41 processing, concomitantly increasing trimer stability. Gp41 N-helix mutations I559P and NT1-5 imparted lateral trimer stability, but also reduced gp120/gp41 processing and/or impacted V2 apex and interface NAb binding. I559P consistently reduced recognition by HIV+ human plasmas, further supporting antigenic differences. Mutations in the gp120 bridging sheet failed to stabilize membrane trimers in a pre-fusion conformation, and also reduced gp120/gp41 processing and exposed non-neutralizing epitopes. Reduced glycan maturation and increased sequon skipping were common side effects of these mutations. In some cases, this may be due to increased rigidity which limits access to glycan processing enzymes. In contrast, viral gp120 did not show glycan skipping. A second, minor species of high mannose gp160 was unaffected by any mutations and instead bypasses normal folding and glycan maturation. Including the full gp41 cytoplasmic tail led to markedly reduced gp120/gp41 processing and greatly increased the proportion of high mannose gp160. Remarkably, monoclonal antibodies were unable to bind to this high mannose gp160 in native protein gels. Overall, our findings suggest caution in leveraging stabilizing mutations in nucleic acid-based immunogens to ensure they impart valuable membrane trimer phenotypes for vaccine use.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
PLoS Pathogens
PLoS Pathogens 生物-病毒学
CiteScore
11.40
自引率
3.00%
发文量
598
审稿时长
2 months
期刊介绍: Bacteria, fungi, parasites, prions and viruses cause a plethora of diseases that have important medical, agricultural, and economic consequences. Moreover, the study of microbes continues to provide novel insights into such fundamental processes as the molecular basis of cellular and organismal function.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信