{"title":"RND泵抑制:Eugenol对大肠杆菌和铜绿假单胞菌临床菌株的计算机和体外研究。","authors":"Elham Etesami Ashtiani, Zohreh Gholizadeh Siahmazgi, Mirsasan Mirpour, Bahram Mohammad Soltani","doi":"10.1007/s40203-023-00159-z","DOIUrl":null,"url":null,"abstract":"<p><p>Multidrug-resistant (MDR) gram-negative bacteria pose significant challenges to the public health. Various factors are involved in the development and spread of MDR strains, including the overuse and misuse of antibiotics, the lack of new antibiotics being developed, and etc. Efflux pump is one of the most important factors in the emergence of antibiotic resistance in bacteria. Aiming at the introduction of novel plant antibiotic, we investigated the effect of eugenol on the <i>MexA</i> and <i>AcrA</i> efflux pumps in <i>Pseudomonas aeruginosa</i> (<i>P. aeruginosa</i>) and <i>Escherichia coli</i> (<i>E. coli</i>). Molecular docking was performed using PachDock Server 1.3. The effect of eugenol on bacteria was determined by disk diffusion, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). A cartwheel test was also performed to evaluate efflux pump inhibition. Finally, the expression of the <i>MexA</i> and <i>AcrA</i> genes was examined by real-time PCR. The results of molecular docking showed that eugenol interacted with <i>MexA</i> and <i>AcrA</i> pumps at - 29.28 and - 28.59 Kcal.mol<sup>-1</sup>, respectively. The results of the antibiogram test indicated that the antibiotic resistance of the treated bacteria decreased significantly (<i>p</i> < 0.05). The results of the cartwheel test suggested the inhibition of efflux pump activity in <i>P. aeruginosa</i> and <i>E. coli</i>. Analysis of the genes by real-time PCR demonstrated that the expression of <i>MexA</i> and <i>AcrA</i> genes was significantly reduced, compared to untreated bacteria (<i>p</i> < 0.001). The findings suggest, among other things, that eugenol may make <i>P. aeruginosa</i> and <i>E. coli</i> more sensitive to antibiotics and that it could be used as an inhibitor to prevent bacteria from becoming resistant to antibiotics.</p>","PeriodicalId":13380,"journal":{"name":"In Silico Pharmacology","volume":"11 1","pages":"22"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10425304/pdf/","citationCount":"0","resultStr":"{\"title\":\"RND pump inhibition: in-silico and in-vitro study by Eugenol on clinical strain of <i>E. coli</i> and <i>P. aeruginosa</i>.\",\"authors\":\"Elham Etesami Ashtiani, Zohreh Gholizadeh Siahmazgi, Mirsasan Mirpour, Bahram Mohammad Soltani\",\"doi\":\"10.1007/s40203-023-00159-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Multidrug-resistant (MDR) gram-negative bacteria pose significant challenges to the public health. Various factors are involved in the development and spread of MDR strains, including the overuse and misuse of antibiotics, the lack of new antibiotics being developed, and etc. Efflux pump is one of the most important factors in the emergence of antibiotic resistance in bacteria. Aiming at the introduction of novel plant antibiotic, we investigated the effect of eugenol on the <i>MexA</i> and <i>AcrA</i> efflux pumps in <i>Pseudomonas aeruginosa</i> (<i>P. aeruginosa</i>) and <i>Escherichia coli</i> (<i>E. coli</i>). Molecular docking was performed using PachDock Server 1.3. The effect of eugenol on bacteria was determined by disk diffusion, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). A cartwheel test was also performed to evaluate efflux pump inhibition. Finally, the expression of the <i>MexA</i> and <i>AcrA</i> genes was examined by real-time PCR. The results of molecular docking showed that eugenol interacted with <i>MexA</i> and <i>AcrA</i> pumps at - 29.28 and - 28.59 Kcal.mol<sup>-1</sup>, respectively. The results of the antibiogram test indicated that the antibiotic resistance of the treated bacteria decreased significantly (<i>p</i> < 0.05). The results of the cartwheel test suggested the inhibition of efflux pump activity in <i>P. aeruginosa</i> and <i>E. coli</i>. Analysis of the genes by real-time PCR demonstrated that the expression of <i>MexA</i> and <i>AcrA</i> genes was significantly reduced, compared to untreated bacteria (<i>p</i> < 0.001). The findings suggest, among other things, that eugenol may make <i>P. aeruginosa</i> and <i>E. coli</i> more sensitive to antibiotics and that it could be used as an inhibitor to prevent bacteria from becoming resistant to antibiotics.</p>\",\"PeriodicalId\":13380,\"journal\":{\"name\":\"In Silico Pharmacology\",\"volume\":\"11 1\",\"pages\":\"22\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10425304/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"In Silico Pharmacology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s40203-023-00159-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"In Silico Pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40203-023-00159-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
耐多药革兰氏阴性菌对公众健康构成重大挑战。耐多药菌株的发展和传播涉及多种因素,包括抗生素的过度使用和滥用、缺乏正在开发的新抗生素等。射流泵是细菌产生抗生素耐药性的最重要因素之一。针对新型植物抗生素的引入,研究了丁香酚对铜绿假单胞菌和大肠杆菌MexA和AcrA外排泵的影响。使用PachDock Server 1.3进行分子对接。采用纸片扩散法、最小抑菌浓度法和最小杀菌浓度法测定丁香酚对细菌的影响。还进行了侧手翻试验来评估外排泵的抑制作用。最后,通过实时PCR检测MexA和AcrA基因的表达。分子对接结果表明,丁香酚在-29.28和-28.59时与MexA和AcrA泵相互作用 Kcal.mol-1。抗菌谱检测结果表明,处理后的细菌对抗生素的耐药性显著下降(p 铜绿假单胞菌和大肠杆菌。通过实时PCR对基因的分析表明,与未处理的细菌相比,MexA和AcrA基因的表达显著降低(p 铜绿假单胞菌和大肠杆菌对抗生素更敏感,它可以作为抑制剂防止细菌对抗生素产生耐药性。
RND pump inhibition: in-silico and in-vitro study by Eugenol on clinical strain of E. coli and P. aeruginosa.
Multidrug-resistant (MDR) gram-negative bacteria pose significant challenges to the public health. Various factors are involved in the development and spread of MDR strains, including the overuse and misuse of antibiotics, the lack of new antibiotics being developed, and etc. Efflux pump is one of the most important factors in the emergence of antibiotic resistance in bacteria. Aiming at the introduction of novel plant antibiotic, we investigated the effect of eugenol on the MexA and AcrA efflux pumps in Pseudomonas aeruginosa (P. aeruginosa) and Escherichia coli (E. coli). Molecular docking was performed using PachDock Server 1.3. The effect of eugenol on bacteria was determined by disk diffusion, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). A cartwheel test was also performed to evaluate efflux pump inhibition. Finally, the expression of the MexA and AcrA genes was examined by real-time PCR. The results of molecular docking showed that eugenol interacted with MexA and AcrA pumps at - 29.28 and - 28.59 Kcal.mol-1, respectively. The results of the antibiogram test indicated that the antibiotic resistance of the treated bacteria decreased significantly (p < 0.05). The results of the cartwheel test suggested the inhibition of efflux pump activity in P. aeruginosa and E. coli. Analysis of the genes by real-time PCR demonstrated that the expression of MexA and AcrA genes was significantly reduced, compared to untreated bacteria (p < 0.001). The findings suggest, among other things, that eugenol may make P. aeruginosa and E. coli more sensitive to antibiotics and that it could be used as an inhibitor to prevent bacteria from becoming resistant to antibiotics.