高维数据随机生存森林的选择性回顾。

Hong Wang, Gang Li
{"title":"高维数据随机生存森林的选择性回顾。","authors":"Hong Wang,&nbsp;Gang Li","doi":"10.22283/qbs.2017.36.2.85","DOIUrl":null,"url":null,"abstract":"<p><p>Over the past decades, there has been considerable interest in applying statistical machine learning methods in survival analysis. Ensemble based approaches, especially random survival forests, have been developed in a variety of contexts due to their high precision and non-parametric nature. This article aims to provide a timely review on recent developments and applications of random survival forests for time-to-event data with high dimensional covariates. This selective review begins with an introduction to the random survival forest framework, followed by a survey of recent developments on splitting criteria, variable selection, and other advanced topics of random survival forests for time-to-event data in high dimensional settings. We also discuss potential research directions for future research.</p>","PeriodicalId":74627,"journal":{"name":"Quantitative bio-science","volume":"36 2","pages":"85-96"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6364686/pdf/nihms-986727.pdf","citationCount":"52","resultStr":"{\"title\":\"A Selective Review on Random Survival Forests for High Dimensional Data.\",\"authors\":\"Hong Wang,&nbsp;Gang Li\",\"doi\":\"10.22283/qbs.2017.36.2.85\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Over the past decades, there has been considerable interest in applying statistical machine learning methods in survival analysis. Ensemble based approaches, especially random survival forests, have been developed in a variety of contexts due to their high precision and non-parametric nature. This article aims to provide a timely review on recent developments and applications of random survival forests for time-to-event data with high dimensional covariates. This selective review begins with an introduction to the random survival forest framework, followed by a survey of recent developments on splitting criteria, variable selection, and other advanced topics of random survival forests for time-to-event data in high dimensional settings. We also discuss potential research directions for future research.</p>\",\"PeriodicalId\":74627,\"journal\":{\"name\":\"Quantitative bio-science\",\"volume\":\"36 2\",\"pages\":\"85-96\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6364686/pdf/nihms-986727.pdf\",\"citationCount\":\"52\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantitative bio-science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22283/qbs.2017.36.2.85\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantitative bio-science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22283/qbs.2017.36.2.85","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 52

摘要

在过去的几十年里,人们对将统计机器学习方法应用于生存分析产生了相当大的兴趣。基于集合的方法,特别是随机生存森林,由于其高精度和非参数性,已经在各种情况下得到了发展。本文旨在及时回顾具有高维协变量的时间-事件数据的随机生存森林的最新发展和应用。这篇选择性综述首先介绍了随机生存森林框架,然后调查了高维环境中随机生存森林的分裂标准、变量选择和其他高级主题的最新发展,以获取时间到事件的数据。我们还讨论了未来研究的潜在研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Selective Review on Random Survival Forests for High Dimensional Data.

A Selective Review on Random Survival Forests for High Dimensional Data.

A Selective Review on Random Survival Forests for High Dimensional Data.

A Selective Review on Random Survival Forests for High Dimensional Data.

Over the past decades, there has been considerable interest in applying statistical machine learning methods in survival analysis. Ensemble based approaches, especially random survival forests, have been developed in a variety of contexts due to their high precision and non-parametric nature. This article aims to provide a timely review on recent developments and applications of random survival forests for time-to-event data with high dimensional covariates. This selective review begins with an introduction to the random survival forest framework, followed by a survey of recent developments on splitting criteria, variable selection, and other advanced topics of random survival forests for time-to-event data in high dimensional settings. We also discuss potential research directions for future research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信