Shuai Wang , Panpan Tan , Hongwei Wang , Jicang Wang , Cai Zhang , Hao Lu , Baoyu Zhao
{"title":"苦马豆素抑制自噬降解并通过降低CTSD o - glcn酰化引起细胞毒性","authors":"Shuai Wang , Panpan Tan , Hongwei Wang , Jicang Wang , Cai Zhang , Hao Lu , Baoyu Zhao","doi":"10.1016/j.cbi.2023.110629","DOIUrl":null,"url":null,"abstract":"<div><p><span>Swainsonine (SW) is the primary toxin in locoweed, a poisonous plant. SW can cause animal poisoning, affect the quality and safety of meat products and threaten human health, but the mechanism of its toxicity is little defined. Here, we identified 159 differentially expressed proteins, many of which are involved in autophagy and glycosylation modification processes, using proteomics<span> sequencing analysis. O-linked-N-acetylglucosamylation (O-GlcNAcylation) is a glycosylation modification widely involved in various biological processes. Our results show that SW toxicity is related to O-GlcNAcylation. In addition, increased O-GlcNAcylation with the O-GlcNAcase (OGA) inhibitor TMG promoted autophagy, while decreased O-GlcNAcylation with the O-GlcNAc transferase (OGT) inhibitor OSMI inhibited autophagy. Further analysis by Immunoprecipitation </span></span><strong>(</strong><span>IP) showed that SW could change the O-GlcNAcylation of Cathepsin D<span> (CTSD), reducing the expression of mature CTSD (m-CTSD). In summary, these findings suggest that SW inhibits the O-GlcNAcylation of CTSD, affecting its maturation and leading to the impairment of lysosome<span> function. Consequently, it inhibits autophagy degradation, and causes cytotoxicity, providing a new theoretical basis for SW toxicological mechanism.</span></span></span></p></div>","PeriodicalId":274,"journal":{"name":"Chemico-Biological Interactions","volume":"382 ","pages":"Article 110629"},"PeriodicalIF":4.7000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Swainsonine inhibits autophagic degradation and causes cytotoxicity by reducing CTSD O-GlcNAcylation\",\"authors\":\"Shuai Wang , Panpan Tan , Hongwei Wang , Jicang Wang , Cai Zhang , Hao Lu , Baoyu Zhao\",\"doi\":\"10.1016/j.cbi.2023.110629\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Swainsonine (SW) is the primary toxin in locoweed, a poisonous plant. SW can cause animal poisoning, affect the quality and safety of meat products and threaten human health, but the mechanism of its toxicity is little defined. Here, we identified 159 differentially expressed proteins, many of which are involved in autophagy and glycosylation modification processes, using proteomics<span> sequencing analysis. O-linked-N-acetylglucosamylation (O-GlcNAcylation) is a glycosylation modification widely involved in various biological processes. Our results show that SW toxicity is related to O-GlcNAcylation. In addition, increased O-GlcNAcylation with the O-GlcNAcase (OGA) inhibitor TMG promoted autophagy, while decreased O-GlcNAcylation with the O-GlcNAc transferase (OGT) inhibitor OSMI inhibited autophagy. Further analysis by Immunoprecipitation </span></span><strong>(</strong><span>IP) showed that SW could change the O-GlcNAcylation of Cathepsin D<span> (CTSD), reducing the expression of mature CTSD (m-CTSD). In summary, these findings suggest that SW inhibits the O-GlcNAcylation of CTSD, affecting its maturation and leading to the impairment of lysosome<span> function. Consequently, it inhibits autophagy degradation, and causes cytotoxicity, providing a new theoretical basis for SW toxicological mechanism.</span></span></span></p></div>\",\"PeriodicalId\":274,\"journal\":{\"name\":\"Chemico-Biological Interactions\",\"volume\":\"382 \",\"pages\":\"Article 110629\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemico-Biological Interactions\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S000927972300296X\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemico-Biological Interactions","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S000927972300296X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Swainsonine inhibits autophagic degradation and causes cytotoxicity by reducing CTSD O-GlcNAcylation
Swainsonine (SW) is the primary toxin in locoweed, a poisonous plant. SW can cause animal poisoning, affect the quality and safety of meat products and threaten human health, but the mechanism of its toxicity is little defined. Here, we identified 159 differentially expressed proteins, many of which are involved in autophagy and glycosylation modification processes, using proteomics sequencing analysis. O-linked-N-acetylglucosamylation (O-GlcNAcylation) is a glycosylation modification widely involved in various biological processes. Our results show that SW toxicity is related to O-GlcNAcylation. In addition, increased O-GlcNAcylation with the O-GlcNAcase (OGA) inhibitor TMG promoted autophagy, while decreased O-GlcNAcylation with the O-GlcNAc transferase (OGT) inhibitor OSMI inhibited autophagy. Further analysis by Immunoprecipitation (IP) showed that SW could change the O-GlcNAcylation of Cathepsin D (CTSD), reducing the expression of mature CTSD (m-CTSD). In summary, these findings suggest that SW inhibits the O-GlcNAcylation of CTSD, affecting its maturation and leading to the impairment of lysosome function. Consequently, it inhibits autophagy degradation, and causes cytotoxicity, providing a new theoretical basis for SW toxicological mechanism.
期刊介绍:
Chemico-Biological Interactions publishes research reports and review articles that examine the molecular, cellular, and/or biochemical basis of toxicologically relevant outcomes. Special emphasis is placed on toxicological mechanisms associated with interactions between chemicals and biological systems. Outcomes may include all traditional endpoints caused by synthetic or naturally occurring chemicals, both in vivo and in vitro. Endpoints of interest include, but are not limited to carcinogenesis, mutagenesis, respiratory toxicology, neurotoxicology, reproductive and developmental toxicology, and immunotoxicology.