{"title":"基于深度学习的冠状动脉计算机断层扫描分析预测功能显著的冠状动脉狭窄。","authors":"Manami Takahashi, Reika Kosuda, Hiroyuki Takaoka, Hajime Yokota, Yasukuni Mori, Joji Ota, Takuro Horikoshi, Yasuhiko Tachibana, Hideki Kitahara, Masafumi Sugawara, Tomonori Kanaeda, Hiroki Suyari, Takashi Uno, Yoshio Kobayashi","doi":"10.1007/s00380-023-02288-z","DOIUrl":null,"url":null,"abstract":"<p><p>Fractional flow reserve derived from coronary CT (FFR-CT) is a noninvasive physiological technique that has shown a good correlation with invasive FFR. However, the use of FFR-CT is restricted by strict application standards, and the diagnostic accuracy of FFR-CT analysis may potentially be decreased by severely calcified coronary arteries because of blooming and beam hardening artifacts. The aim of this study was to evaluate the utility of deep learning (DL)-based coronary computed tomography (CT) data analysis in predicting invasive fractional flow reserve (FFR), especially in cases with severely calcified coronary arteries. We analyzed 184 consecutive cases (241 coronary arteries) which underwent coronary CT and invasive coronary angiography, including invasive FFR, within a three-month period. Mean coronary artery calcium scores were 963 ± 1226. We evaluated and compared the vessel-based diagnostic accuracy of our proposed DL model and a visual assessment to evaluate functionally significant coronary artery stenosis (invasive FFR < 0.80). A deep neural network was trained with consecutive short axial images of coronary arteries on coronary CT. Ninety-one coronary arteries of 89 cases (48%) had FFR-positive functionally significant stenosis. On receiver operating characteristics (ROC) analysis to predict FFR-positive stenosis using the trained DL model, average area under the curve (AUC) of the ROC curve was 0.756, which was superior to the AUC of visual assessment of significant (≥ 70%) coronary artery stenosis on CT (0.574, P = 0.011). The sensitivity, specificity, positive and negative predictive value (PPV and NPV), and accuracy of the DL model and visual assessment for detecting FFR-positive stenosis were 82 and 36%, 68 and 78%, 59 and 48%, 87 and 69%, and 73 and 63%, respectively. Sensitivity and NPV for the prediction of FFR-positive stenosis were significantly higher with our DL model than visual assessment (P = 0.0004, and P = 0.024). DL-based coronary CT data analysis has a higher diagnostic accuracy for functionally significant coronary artery stenosis than visual assessment.</p>","PeriodicalId":12940,"journal":{"name":"Heart and Vessels","volume":" ","pages":"1318-1328"},"PeriodicalIF":1.5000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Deep learning-based coronary computed tomography analysis to predict functionally significant coronary artery stenosis.\",\"authors\":\"Manami Takahashi, Reika Kosuda, Hiroyuki Takaoka, Hajime Yokota, Yasukuni Mori, Joji Ota, Takuro Horikoshi, Yasuhiko Tachibana, Hideki Kitahara, Masafumi Sugawara, Tomonori Kanaeda, Hiroki Suyari, Takashi Uno, Yoshio Kobayashi\",\"doi\":\"10.1007/s00380-023-02288-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Fractional flow reserve derived from coronary CT (FFR-CT) is a noninvasive physiological technique that has shown a good correlation with invasive FFR. However, the use of FFR-CT is restricted by strict application standards, and the diagnostic accuracy of FFR-CT analysis may potentially be decreased by severely calcified coronary arteries because of blooming and beam hardening artifacts. The aim of this study was to evaluate the utility of deep learning (DL)-based coronary computed tomography (CT) data analysis in predicting invasive fractional flow reserve (FFR), especially in cases with severely calcified coronary arteries. We analyzed 184 consecutive cases (241 coronary arteries) which underwent coronary CT and invasive coronary angiography, including invasive FFR, within a three-month period. Mean coronary artery calcium scores were 963 ± 1226. We evaluated and compared the vessel-based diagnostic accuracy of our proposed DL model and a visual assessment to evaluate functionally significant coronary artery stenosis (invasive FFR < 0.80). A deep neural network was trained with consecutive short axial images of coronary arteries on coronary CT. Ninety-one coronary arteries of 89 cases (48%) had FFR-positive functionally significant stenosis. On receiver operating characteristics (ROC) analysis to predict FFR-positive stenosis using the trained DL model, average area under the curve (AUC) of the ROC curve was 0.756, which was superior to the AUC of visual assessment of significant (≥ 70%) coronary artery stenosis on CT (0.574, P = 0.011). The sensitivity, specificity, positive and negative predictive value (PPV and NPV), and accuracy of the DL model and visual assessment for detecting FFR-positive stenosis were 82 and 36%, 68 and 78%, 59 and 48%, 87 and 69%, and 73 and 63%, respectively. Sensitivity and NPV for the prediction of FFR-positive stenosis were significantly higher with our DL model than visual assessment (P = 0.0004, and P = 0.024). DL-based coronary CT data analysis has a higher diagnostic accuracy for functionally significant coronary artery stenosis than visual assessment.</p>\",\"PeriodicalId\":12940,\"journal\":{\"name\":\"Heart and Vessels\",\"volume\":\" \",\"pages\":\"1318-1328\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Heart and Vessels\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00380-023-02288-z\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/8/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heart and Vessels","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00380-023-02288-z","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/8 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
Deep learning-based coronary computed tomography analysis to predict functionally significant coronary artery stenosis.
Fractional flow reserve derived from coronary CT (FFR-CT) is a noninvasive physiological technique that has shown a good correlation with invasive FFR. However, the use of FFR-CT is restricted by strict application standards, and the diagnostic accuracy of FFR-CT analysis may potentially be decreased by severely calcified coronary arteries because of blooming and beam hardening artifacts. The aim of this study was to evaluate the utility of deep learning (DL)-based coronary computed tomography (CT) data analysis in predicting invasive fractional flow reserve (FFR), especially in cases with severely calcified coronary arteries. We analyzed 184 consecutive cases (241 coronary arteries) which underwent coronary CT and invasive coronary angiography, including invasive FFR, within a three-month period. Mean coronary artery calcium scores were 963 ± 1226. We evaluated and compared the vessel-based diagnostic accuracy of our proposed DL model and a visual assessment to evaluate functionally significant coronary artery stenosis (invasive FFR < 0.80). A deep neural network was trained with consecutive short axial images of coronary arteries on coronary CT. Ninety-one coronary arteries of 89 cases (48%) had FFR-positive functionally significant stenosis. On receiver operating characteristics (ROC) analysis to predict FFR-positive stenosis using the trained DL model, average area under the curve (AUC) of the ROC curve was 0.756, which was superior to the AUC of visual assessment of significant (≥ 70%) coronary artery stenosis on CT (0.574, P = 0.011). The sensitivity, specificity, positive and negative predictive value (PPV and NPV), and accuracy of the DL model and visual assessment for detecting FFR-positive stenosis were 82 and 36%, 68 and 78%, 59 and 48%, 87 and 69%, and 73 and 63%, respectively. Sensitivity and NPV for the prediction of FFR-positive stenosis were significantly higher with our DL model than visual assessment (P = 0.0004, and P = 0.024). DL-based coronary CT data analysis has a higher diagnostic accuracy for functionally significant coronary artery stenosis than visual assessment.
期刊介绍:
Heart and Vessels is an English-language journal that provides a forum of original ideas, excellent methods, and fascinating techniques on cardiovascular disease fields. All papers submitted for publication are evaluated only with regard to scientific quality and relevance to the heart and vessels. Contributions from those engaged in practical medicine, as well as from those involved in basic research, are welcomed.