An oligogenic case of severe neonatal thrombocytopenia and a purportedly benign variant in GFI1B requiring reinterpretation.

IF 2.5 3区 医学 Q3 CELL BIOLOGY
Max Frenkel, April Hall, M Stephen Meyn, Carol A Diamond
{"title":"An oligogenic case of severe neonatal thrombocytopenia and a purportedly benign variant in <i>GFI1B</i> requiring reinterpretation.","authors":"Max Frenkel, April Hall, M Stephen Meyn, Carol A Diamond","doi":"10.1080/09537104.2023.2237592","DOIUrl":null,"url":null,"abstract":"<p><p>Although thrombocytopenia in neonatal intensive care patients is rarely due to inherited disorders, the number of genetic variants implicated in platelet defects has grown dramatically with increasing genome-wide sequencing. Here we describe a case of severe, oligogenic neonatal thrombocytopenia and reinterpret a reportedly benign mutation that is likely pathogenic. Despite this patient's synonymous mutation (<i>GFI1B</i> 576 C>T, Phe192=) being annotated as benign, GFI1B is a well-known regulator of megakaryopoiesis, this variant alters splicing and megakaryocyte maturation, and our analysis of existing genome-wide associated studies demonstrates that it likely causes gray platelet syndrome. This variant has not been reported in a case of life-threatening thrombocytopenia. We propose that the severity of this patient's phenotype is due to synergistic epistasis between the intrinsic platelet defect caused by this mutation and her concomitant inherited PMM2 congenital glycosylation disorder neither of which have been associated with such a severe phenotype. This case highlights the importance of whole-exome/genome sequencing for critically ill patients, reexamining variant interpretation when clinically indicated, and the need to study diverse genetic variation in hematopoiesis.</p>","PeriodicalId":20268,"journal":{"name":"Platelets","volume":"34 1","pages":"2237592"},"PeriodicalIF":2.5000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10653983/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Platelets","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/09537104.2023.2237592","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Although thrombocytopenia in neonatal intensive care patients is rarely due to inherited disorders, the number of genetic variants implicated in platelet defects has grown dramatically with increasing genome-wide sequencing. Here we describe a case of severe, oligogenic neonatal thrombocytopenia and reinterpret a reportedly benign mutation that is likely pathogenic. Despite this patient's synonymous mutation (GFI1B 576 C>T, Phe192=) being annotated as benign, GFI1B is a well-known regulator of megakaryopoiesis, this variant alters splicing and megakaryocyte maturation, and our analysis of existing genome-wide associated studies demonstrates that it likely causes gray platelet syndrome. This variant has not been reported in a case of life-threatening thrombocytopenia. We propose that the severity of this patient's phenotype is due to synergistic epistasis between the intrinsic platelet defect caused by this mutation and her concomitant inherited PMM2 congenital glycosylation disorder neither of which have been associated with such a severe phenotype. This case highlights the importance of whole-exome/genome sequencing for critically ill patients, reexamining variant interpretation when clinically indicated, and the need to study diverse genetic variation in hematopoiesis.

严重新生儿血小板减少的少原性病例和GFI1B的良性变异需要重新解释。
尽管新生儿重症监护患者的血小板减少症很少是由遗传性疾病引起的,但随着全基因组测序的增加,与血小板缺陷相关的基因变异数量急剧增加。在这里,我们描述了一例严重的少源性新生儿血小板减少症,并重新解释了一种可能致病的良性突变。尽管该患者的同义突变(GFI1B 576 C>T,Phe192=)被注释为良性,但GFI1B是众所周知的巨核细胞生成调节因子,该变体改变了剪接和巨核细胞成熟,我们对现有全基因组相关研究的分析表明,它可能导致灰血小板综合征。这种变体尚未在危及生命的血小板减少症病例中报告。我们认为,该患者表型的严重性是由于该突变引起的固有血小板缺陷和她伴随的遗传性PMM2先天性糖基化障碍之间的协同上位性,这两种疾病都与如此严重的表型无关。该病例强调了全外显子组/基因组测序对危重患者的重要性,在临床指示时重新检查变异解释,以及研究造血中多种遗传变异的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Platelets
Platelets 医学-细胞生物学
CiteScore
6.70
自引率
3.00%
发文量
79
审稿时长
1 months
期刊介绍: Platelets is an international, peer-reviewed journal covering all aspects of platelet- and megakaryocyte-related research. Platelets provides the opportunity for contributors and readers across scientific disciplines to engage with new information about blood platelets. The journal’s Methods section aims to improve standardization between laboratories and to help researchers replicate difficult methods. Research areas include: Platelet function Biochemistry Signal transduction Pharmacology and therapeutics Interaction with other cells in the blood vessel wall The contribution of platelets and platelet-derived products to health and disease The journal publishes original articles, fast-track articles, review articles, systematic reviews, methods papers, short communications, case reports, opinion articles, commentaries, gene of the issue, and letters to the editor. Platelets operates a single-blind peer review policy. Authors can choose to publish gold open access in this journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信