{"title":"Breath analysis combined with cardiopulmonary exercise testing and echocardiography for monitoring heart failure patients: the AEOLUS protocol.","authors":"Denise Biagini, Nicola Riccardo Pugliese, Federico Vivaldi, Silvia Ghimenti, Alessio Lenzi, Francesca De Angelis, Matyas Ripszam, Tobias Bruderer, Silvia Armenia, Federica Cappelli, Stefano Taddei, Stefano Masi, Fabio Di Francesco, Tommaso Lomonaco","doi":"10.1088/1752-7163/acec08","DOIUrl":null,"url":null,"abstract":"<p><p>This paper describes the AEOLUS pilot study which combines breath analysis with cardiopulmonary exercise testing (CPET) and an echocardiographic examination for monitoring heart failure (HF) patients. Ten consecutive patients with a prior clinical diagnosis of HF with reduced left ventricular ejection fraction were prospectively enrolled together with 15 control patients with cardiovascular risk factors, including hypertension, type II diabetes or chronic ischemic heart disease. Breath samples were collected at rest and during CPET coupled with exercise stress echocardiography (CPET-ESE) protocol by means of needle trap micro-extraction and were analyzed through gas-chromatography coupled with mass spectrometry. The protocol also involved using of a selected ion flow tube mass spectrometer for a breath-by-breath isoprene and acetone analysis during exercise. At rest, HF patients showed increased breath levels of acetone and pentane, which are related to altered oxidation of fatty acids and oxidative stress, respectively. A significant positive correlation was observed between acetone and the gold standard biomarker NT-proBNP in plasma (<i>r</i>= 0.646,<i>p</i>< 0.001), both measured at rest. During exercise, some exhaled volatiles (e.g., isoprene) mirrored ventilatory and/or hemodynamic adaptation, whereas others (e.g., sulfide compounds and 3-hydroxy-2-butanone) depended on their origin. At peak effort, acetone levels in HF patients differed significantly from those of the control group, suggesting an altered myocardial and systemic metabolic adaptation to exercise for HF patients. These preliminary data suggest that concomitant acquisition of CPET-ESE and breath analysis is feasible and might provide additional clinical information on the metabolic maladaptation of HF patients to exercise. Such information may refine the identification of patients at higher risk of disease worsening.</p>","PeriodicalId":15306,"journal":{"name":"Journal of breath research","volume":"17 4","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of breath research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1088/1752-7163/acec08","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 1
Abstract
This paper describes the AEOLUS pilot study which combines breath analysis with cardiopulmonary exercise testing (CPET) and an echocardiographic examination for monitoring heart failure (HF) patients. Ten consecutive patients with a prior clinical diagnosis of HF with reduced left ventricular ejection fraction were prospectively enrolled together with 15 control patients with cardiovascular risk factors, including hypertension, type II diabetes or chronic ischemic heart disease. Breath samples were collected at rest and during CPET coupled with exercise stress echocardiography (CPET-ESE) protocol by means of needle trap micro-extraction and were analyzed through gas-chromatography coupled with mass spectrometry. The protocol also involved using of a selected ion flow tube mass spectrometer for a breath-by-breath isoprene and acetone analysis during exercise. At rest, HF patients showed increased breath levels of acetone and pentane, which are related to altered oxidation of fatty acids and oxidative stress, respectively. A significant positive correlation was observed between acetone and the gold standard biomarker NT-proBNP in plasma (r= 0.646,p< 0.001), both measured at rest. During exercise, some exhaled volatiles (e.g., isoprene) mirrored ventilatory and/or hemodynamic adaptation, whereas others (e.g., sulfide compounds and 3-hydroxy-2-butanone) depended on their origin. At peak effort, acetone levels in HF patients differed significantly from those of the control group, suggesting an altered myocardial and systemic metabolic adaptation to exercise for HF patients. These preliminary data suggest that concomitant acquisition of CPET-ESE and breath analysis is feasible and might provide additional clinical information on the metabolic maladaptation of HF patients to exercise. Such information may refine the identification of patients at higher risk of disease worsening.
期刊介绍:
Journal of Breath Research is dedicated to all aspects of scientific breath research. The traditional focus is on analysis of volatile compounds and aerosols in exhaled breath for the investigation of exogenous exposures, metabolism, toxicology, health status and the diagnosis of disease and breath odours. The journal also welcomes other breath-related topics.
Typical areas of interest include:
Big laboratory instrumentation: describing new state-of-the-art analytical instrumentation capable of performing high-resolution discovery and targeted breath research; exploiting complex technologies drawn from other areas of biochemistry and genetics for breath research.
Engineering solutions: developing new breath sampling technologies for condensate and aerosols, for chemical and optical sensors, for extraction and sample preparation methods, for automation and standardization, and for multiplex analyses to preserve the breath matrix and facilitating analytical throughput. Measure exhaled constituents (e.g. CO2, acetone, isoprene) as markers of human presence or mitigate such contaminants in enclosed environments.
Human and animal in vivo studies: decoding the ''breath exposome'', implementing exposure and intervention studies, performing cross-sectional and case-control research, assaying immune and inflammatory response, and testing mammalian host response to infections and exogenous exposures to develop information directly applicable to systems biology. Studying inhalation toxicology; inhaled breath as a source of internal dose; resultant blood, breath and urinary biomarkers linked to inhalation pathway.
Cellular and molecular level in vitro studies.
Clinical, pharmacological and forensic applications.
Mathematical, statistical and graphical data interpretation.