Growth modeling approach with the Verhulst coexistence dynamic properties for regulation purposes.

IF 1.3 4区 生物学 Q3 BIOLOGY
A J Morales-Erosa, J Reyes-Reyes, C M Astorga-Zaragoza, G L Osorio-Gordillo, C D García-Beltrán, G Madrigal-Espinosa
{"title":"Growth modeling approach with the Verhulst coexistence dynamic properties for regulation purposes.","authors":"A J Morales-Erosa,&nbsp;J Reyes-Reyes,&nbsp;C M Astorga-Zaragoza,&nbsp;G L Osorio-Gordillo,&nbsp;C D García-Beltrán,&nbsp;G Madrigal-Espinosa","doi":"10.1007/s12064-023-00397-x","DOIUrl":null,"url":null,"abstract":"<p><p>For this research, the properties of the logistic growth model for independent and coexisting species were used to set definitions for the possible regulation of one or two growth variables through their coupling parameters. The present analysis is done for the single-species Verhulst model without coupling, the single-species Verhulst model coupled with an exogenous signal, and the two-species Verhulst coexistence growth model which represents six different ecological regimes of interaction. The models' parameters, such as the intrinsic growth rate and the coupling, are defined. Finally, the control results are expressed as lemmas for regulation, and they are shown using a simulation example of a fish population growing independent of human interaction (no harvesting, no fishing) and the simulation of the regulation of said population when the coupling of fish and humans is involved (harvesting, fishing).</p>","PeriodicalId":54428,"journal":{"name":"Theory in Biosciences","volume":"142 3","pages":"221-234"},"PeriodicalIF":1.3000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10423132/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory in Biosciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12064-023-00397-x","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

For this research, the properties of the logistic growth model for independent and coexisting species were used to set definitions for the possible regulation of one or two growth variables through their coupling parameters. The present analysis is done for the single-species Verhulst model without coupling, the single-species Verhulst model coupled with an exogenous signal, and the two-species Verhulst coexistence growth model which represents six different ecological regimes of interaction. The models' parameters, such as the intrinsic growth rate and the coupling, are defined. Finally, the control results are expressed as lemmas for regulation, and they are shown using a simulation example of a fish population growing independent of human interaction (no harvesting, no fishing) and the simulation of the regulation of said population when the coupling of fish and humans is involved (harvesting, fishing).

Abstract Image

Abstract Image

Abstract Image

以Verhulst共存动态特性为调节目的的增长建模方法。
在本研究中,利用独立和共存物种的logistic生长模型的特性,定义了一个或两个生长变量通过其耦合参数可能进行的调节。本文分析了不耦合的单物种Verhulst模型、耦合外源信号的单物种Verhulst模型和代表六种不同生态系统相互作用的两物种Verhulst共存生长模型。定义了模型的参数,如固有增长率和耦合。最后,将控制结果表示为调节的理据,并使用一个鱼种群独立于人类交互(不收获,不捕鱼)生长的模拟示例以及涉及鱼和人类耦合(收获,捕鱼)时所述种群调节的模拟示例来显示控制结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Theory in Biosciences
Theory in Biosciences 生物-生物学
CiteScore
2.70
自引率
9.10%
发文量
21
审稿时长
3 months
期刊介绍: Theory in Biosciences focuses on new concepts in theoretical biology. It also includes analytical and modelling approaches as well as philosophical and historical issues. Central topics are: Artificial Life; Bioinformatics with a focus on novel methods, phenomena, and interpretations; Bioinspired Modeling; Complexity, Robustness, and Resilience; Embodied Cognition; Evolutionary Biology; Evo-Devo; Game Theoretic Modeling; Genetics; History of Biology; Language Evolution; Mathematical Biology; Origin of Life; Philosophy of Biology; Population Biology; Systems Biology; Theoretical Ecology; Theoretical Molecular Biology; Theoretical Neuroscience & Cognition.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信