Margo Slomp, Ilke G S de Lange, Joram D Mul, Anouk Schrantee, Susanne E la Fleur
{"title":"Investigating Habenula Functional Connectivity and Reward-Related Activity in Obesity Using Human Connectome Project Data.","authors":"Margo Slomp, Ilke G S de Lange, Joram D Mul, Anouk Schrantee, Susanne E la Fleur","doi":"10.1089/brain.2023.0034","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Introduction:</i></b> The habenula, a brain region involved in aversion, might negatively modulate caloric intake. Functional magnetic resonance imaging (fMRI) studies reported associations between weight loss and habenula functional connectivity. However, whether habenula resting-state functional connectivity (rsFC) and reward-related activity are altered in obesity is yet unknown. <b><i>Methods:</i></b> Using data from the Human Connectome Project, we included 300 subjects with various body mass indexes (BMIs) and a healthy long-term blood glucose (hemoglobin A1c [HbA1c]). In addition, we investigated a potential BMI × HbA1c interaction in a separate cohort including subjects with prediabetes (<i>n</i> = 72). Habenula rsFC was assessed using a region of interest (ROI)-to-ROI analysis. Furthermore, a separate analysis using gambling task fMRI data focused on reward-related habenula activity. <b><i>Results:</i></b> We did not find an association between BMI and habenula rsFC for any of the ROIs. For the exploratory analysis of the BMI × HbA1c effect, a significant interaction effect was found for the habenula-ventral tegmental area (VTA) connection, but this did not survive multiple comparisons correction. Monetary punishment compared with reward activated the bilateral habenula in the BMI sample, but this activity was not associated with BMI. <b><i>Discussion:</i></b> In conclusion, we did not find evidence for an association between BMI and habenula rsFC or reward-related activity. However, there might be an interaction between BMI and HbA1c for the habenula-VTA rsFC, suggestive of a role of the habenula in glucose regulation. Future studies should focus on metabolic parameters in their experimental design to confirm our findings and explore the precise role of the habenula in metabolism.</p>","PeriodicalId":9155,"journal":{"name":"Brain connectivity","volume":" ","pages":"541-552"},"PeriodicalIF":2.4000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain connectivity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/brain.2023.0034","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/21 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: The habenula, a brain region involved in aversion, might negatively modulate caloric intake. Functional magnetic resonance imaging (fMRI) studies reported associations between weight loss and habenula functional connectivity. However, whether habenula resting-state functional connectivity (rsFC) and reward-related activity are altered in obesity is yet unknown. Methods: Using data from the Human Connectome Project, we included 300 subjects with various body mass indexes (BMIs) and a healthy long-term blood glucose (hemoglobin A1c [HbA1c]). In addition, we investigated a potential BMI × HbA1c interaction in a separate cohort including subjects with prediabetes (n = 72). Habenula rsFC was assessed using a region of interest (ROI)-to-ROI analysis. Furthermore, a separate analysis using gambling task fMRI data focused on reward-related habenula activity. Results: We did not find an association between BMI and habenula rsFC for any of the ROIs. For the exploratory analysis of the BMI × HbA1c effect, a significant interaction effect was found for the habenula-ventral tegmental area (VTA) connection, but this did not survive multiple comparisons correction. Monetary punishment compared with reward activated the bilateral habenula in the BMI sample, but this activity was not associated with BMI. Discussion: In conclusion, we did not find evidence for an association between BMI and habenula rsFC or reward-related activity. However, there might be an interaction between BMI and HbA1c for the habenula-VTA rsFC, suggestive of a role of the habenula in glucose regulation. Future studies should focus on metabolic parameters in their experimental design to confirm our findings and explore the precise role of the habenula in metabolism.
期刊介绍:
Brain Connectivity provides groundbreaking findings in the rapidly advancing field of connectivity research at the systems and network levels. The Journal disseminates information on brain mapping, modeling, novel research techniques, new imaging modalities, preclinical animal studies, and the translation of research discoveries from the laboratory to the clinic.
This essential journal fosters the application of basic biological discoveries and contributes to the development of novel diagnostic and therapeutic interventions to recognize and treat a broad range of neurodegenerative and psychiatric disorders such as: Alzheimer’s disease, attention-deficit hyperactivity disorder, posttraumatic stress disorder, epilepsy, traumatic brain injury, stroke, dementia, and depression.