Seonmyeong Kim, Matlabjon Sattorov, Dongpyo Hong, Heon Kang, Jaehun Park, Jae Hyuk Lee, Rory Ma, Andrew V Martin, Carl Caleman, Jonas A Sellberg, Prasanta Kumar Datta, Sang Yoon Park, Gun-Sik Park
{"title":"Observing ice structure of micron-sized vapor-deposited ice with an x-ray free-electron laser.","authors":"Seonmyeong Kim, Matlabjon Sattorov, Dongpyo Hong, Heon Kang, Jaehun Park, Jae Hyuk Lee, Rory Ma, Andrew V Martin, Carl Caleman, Jonas A Sellberg, Prasanta Kumar Datta, Sang Yoon Park, Gun-Sik Park","doi":"10.1063/4.0000185","DOIUrl":null,"url":null,"abstract":"<p><p>The direct observation of the structure of micrometer-sized vapor-deposited ice is performed at Pohang Accelerator Laboratory x-ray free electron laser (PAL-XFEL). The formation of micrometer-sized ice crystals and their structure is important in various fields, including atmospheric science, cryobiology, and astrophysics, but understanding the structure of micrometer-sized ice crystals remains challenging due to the lack of direct observation. Using intense x-ray diffraction from PAL-XFEL, we could observe the structure of micrometer-sized vapor-deposited ice below 150 K with a thickness of 2-50 <i>μ</i>m grown in an ultrahigh vacuum chamber. The structure of the ice grown comprises cubic and hexagonal sequences that are randomly arranged to produce a stacking-disordered ice. We observed that ice with a high cubicity of more than 80% was transformed to partially oriented hexagonal ice when the thickness of the ice deposition grew beyond 5 <i>μ</i>m. This suggests that precise temperature control and clean deposition conditions allow <i>μ</i>m-thick ice films with high cubicity to be grown on hydrophilic Si<sub>3</sub>N<sub>4</sub> membranes. The low influence of impurities could enable <i>in situ</i> diffraction experiments of ice nucleation and growth from interfacial layers to bulk ice.</p>","PeriodicalId":48683,"journal":{"name":"Structural Dynamics-Us","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10415018/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Dynamics-Us","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/4.0000185","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The direct observation of the structure of micrometer-sized vapor-deposited ice is performed at Pohang Accelerator Laboratory x-ray free electron laser (PAL-XFEL). The formation of micrometer-sized ice crystals and their structure is important in various fields, including atmospheric science, cryobiology, and astrophysics, but understanding the structure of micrometer-sized ice crystals remains challenging due to the lack of direct observation. Using intense x-ray diffraction from PAL-XFEL, we could observe the structure of micrometer-sized vapor-deposited ice below 150 K with a thickness of 2-50 μm grown in an ultrahigh vacuum chamber. The structure of the ice grown comprises cubic and hexagonal sequences that are randomly arranged to produce a stacking-disordered ice. We observed that ice with a high cubicity of more than 80% was transformed to partially oriented hexagonal ice when the thickness of the ice deposition grew beyond 5 μm. This suggests that precise temperature control and clean deposition conditions allow μm-thick ice films with high cubicity to be grown on hydrophilic Si3N4 membranes. The low influence of impurities could enable in situ diffraction experiments of ice nucleation and growth from interfacial layers to bulk ice.
Structural Dynamics-UsCHEMISTRY, PHYSICALPHYSICS, ATOMIC, MOLECU-PHYSICS, ATOMIC, MOLECULAR & CHEMICAL
CiteScore
5.50
自引率
3.60%
发文量
24
审稿时长
16 weeks
期刊介绍:
Structural Dynamics focuses on the recent developments in experimental and theoretical methods and techniques that allow a visualization of the electronic and geometric structural changes in real time of chemical, biological, and condensed-matter systems. The community of scientists and engineers working on structural dynamics in such diverse systems often use similar instrumentation and methods.
The journal welcomes articles dealing with fundamental problems of electronic and structural dynamics that are tackled by new methods, such as:
Time-resolved X-ray and electron diffraction and scattering,
Coherent diffractive imaging,
Time-resolved X-ray spectroscopies (absorption, emission, resonant inelastic scattering, etc.),
Time-resolved electron energy loss spectroscopy (EELS) and electron microscopy,
Time-resolved photoelectron spectroscopies (UPS, XPS, ARPES, etc.),
Multidimensional spectroscopies in the infrared, the visible and the ultraviolet,
Nonlinear spectroscopies in the VUV, the soft and the hard X-ray domains,
Theory and computational methods and algorithms for the analysis and description of structuraldynamics and their associated experimental signals.
These new methods are enabled by new instrumentation, such as:
X-ray free electron lasers, which provide flux, coherence, and time resolution,
New sources of ultrashort electron pulses,
New sources of ultrashort vacuum ultraviolet (VUV) to hard X-ray pulses, such as high-harmonic generation (HHG) sources or plasma-based sources,
New sources of ultrashort infrared and terahertz (THz) radiation,
New detectors for X-rays and electrons,
New sample handling and delivery schemes,
New computational capabilities.