A queuing model for ventilator capacity management during the COVID-19 pandemic.

IF 2.3 3区 医学 Q2 HEALTH POLICY & SERVICES
Health Care Management Science Pub Date : 2023-06-01 Epub Date: 2023-05-22 DOI:10.1007/s10729-023-09632-9
Samantha L Zimmerman, Alexander R Rutherford, Alexa van der Waall, Monica Norena, Peter Dodek
{"title":"A queuing model for ventilator capacity management during the COVID-19 pandemic.","authors":"Samantha L Zimmerman, Alexander R Rutherford, Alexa van der Waall, Monica Norena, Peter Dodek","doi":"10.1007/s10729-023-09632-9","DOIUrl":null,"url":null,"abstract":"<p><p>We applied a queuing model to inform ventilator capacity planning during the first wave of the COVID-19 epidemic in the province of British Columbia (BC), Canada. The core of our framework is a multi-class Erlang loss model that represents ventilator use by both COVID-19 and non-COVID-19 patients. Input for the model includes COVID-19 case projections, and our analysis incorporates projections with different levels of transmission due to public health measures and social distancing. We incorporated data from the BC Intensive Care Unit Database to calibrate and validate the model. Using discrete event simulation, we projected ventilator access, including when capacity would be reached and how many patients would be unable to access a ventilator. Simulation results were compared with three numerical approximation methods, namely pointwise stationary approximation, modified offered load, and fixed point approximation. Using this comparison, we developed a hybrid optimization approach to efficiently identify required ventilator capacity to meet access targets. Model projections demonstrate that public health measures and social distancing potentially averted up to 50 deaths per day in BC, by ensuring that ventilator capacity was not reached during the first wave of COVID-19. Without these measures, an additional 173 ventilators would have been required to ensure that at least 95% of patients can access a ventilator immediately. Our model enables policy makers to estimate critical care utilization based on epidemic projections with different transmission levels, thereby providing a tool to quantify the interplay between public health measures, necessary critical care resources, and patient access indicators.</p>","PeriodicalId":12903,"journal":{"name":"Health Care Management Science","volume":"26 2","pages":"200-216"},"PeriodicalIF":2.3000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10201510/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health Care Management Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10729-023-09632-9","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/5/22 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"HEALTH POLICY & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

We applied a queuing model to inform ventilator capacity planning during the first wave of the COVID-19 epidemic in the province of British Columbia (BC), Canada. The core of our framework is a multi-class Erlang loss model that represents ventilator use by both COVID-19 and non-COVID-19 patients. Input for the model includes COVID-19 case projections, and our analysis incorporates projections with different levels of transmission due to public health measures and social distancing. We incorporated data from the BC Intensive Care Unit Database to calibrate and validate the model. Using discrete event simulation, we projected ventilator access, including when capacity would be reached and how many patients would be unable to access a ventilator. Simulation results were compared with three numerical approximation methods, namely pointwise stationary approximation, modified offered load, and fixed point approximation. Using this comparison, we developed a hybrid optimization approach to efficiently identify required ventilator capacity to meet access targets. Model projections demonstrate that public health measures and social distancing potentially averted up to 50 deaths per day in BC, by ensuring that ventilator capacity was not reached during the first wave of COVID-19. Without these measures, an additional 173 ventilators would have been required to ensure that at least 95% of patients can access a ventilator immediately. Our model enables policy makers to estimate critical care utilization based on epidemic projections with different transmission levels, thereby providing a tool to quantify the interplay between public health measures, necessary critical care resources, and patient access indicators.

Abstract Image

Abstract Image

Abstract Image

COVID-19 大流行期间呼吸机容量管理的排队模型。
在加拿大不列颠哥伦比亚省(BC)第一波 COVID-19 流行期间,我们应用排队模型为呼吸机容量规划提供信息。我们框架的核心是一个多类厄朗损失模型,它代表了 COVID-19 和非 COVID-19 患者使用呼吸机的情况。该模型的输入包括 COVID-19 病例预测,我们的分析纳入了因公共卫生措施和社会疏远而导致的不同传播水平的预测。我们纳入了不列颠哥伦比亚省重症监护室数据库的数据来校准和验证模型。通过离散事件模拟,我们对呼吸机使用情况进行了预测,包括何时达到容量以及有多少患者无法使用呼吸机。我们将模拟结果与三种数值近似方法进行了比较,分别是点式静态近似法、修正提供负荷法和定点近似法。通过比较,我们开发了一种混合优化方法,以有效确定所需的呼吸机容量,从而达到使用目标。模型预测结果表明,在不列颠哥伦比亚省,公共卫生措施和社会疏导可确保在 COVID-19 第一阶段期间不达到呼吸机容量,从而每天避免多达 50 例死亡。如果没有这些措施,则需要增加 173 台呼吸机才能确保至少 95% 的患者能够立即使用呼吸机。我们的模型使政策制定者能够根据不同传播水平的疫情预测来估算重症监护的利用率,从而为量化公共卫生措施、必要的重症监护资源和患者使用指标之间的相互作用提供了一种工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Health Care Management Science
Health Care Management Science HEALTH POLICY & SERVICES-
CiteScore
7.20
自引率
5.60%
发文量
40
期刊介绍: Health Care Management Science publishes papers dealing with health care delivery, health care management, and health care policy. Papers should have a decision focus and make use of quantitative methods including management science, operations research, analytics, machine learning, and other emerging areas. Articles must clearly articulate the relevance and the realized or potential impact of the work. Applied research will be considered and is of particular interest if there is evidence that it was implemented or informed a decision-making process. Papers describing routine applications of known methods are discouraged. Authors are encouraged to disclose all data and analyses thereof, and to provide computational code when appropriate. Editorial statements for the individual departments are provided below. Health Care Analytics Departmental Editors: Margrét Bjarnadóttir, University of Maryland Nan Kong, Purdue University With the explosion in computing power and available data, we have seen fast changes in the analytics applied in the healthcare space. The Health Care Analytics department welcomes papers applying a broad range of analytical approaches, including those rooted in machine learning, survival analysis, and complex event analysis, that allow healthcare professionals to find opportunities for improvement in health system management, patient engagement, spending, and diagnosis. We especially encourage papers that combine predictive and prescriptive analytics to improve decision making and health care outcomes. The contribution of papers can be across multiple dimensions including new methodology, novel modeling techniques and health care through real-world cohort studies. Papers that are methodologically focused need in addition to show practical relevance. Similarly papers that are application focused should clearly demonstrate improvements over the status quo and available approaches by applying rigorous analytics. Health Care Operations Management Departmental Editors: Nilay Tanik Argon, University of North Carolina at Chapel Hill Bob Batt, University of Wisconsin The department invites high-quality papers on the design, control, and analysis of operations at healthcare systems. We seek papers on classical operations management issues (such as scheduling, routing, queuing, transportation, patient flow, and quality) as well as non-traditional problems driven by everchanging healthcare practice. Empirical, experimental, and analytical (model based) methodologies are all welcome. Papers may draw theory from across disciplines, and should provide insight into improving operations from the perspective of patients, service providers, organizations (municipal/government/industry), and/or society. Health Care Management Science Practice Departmental Editor: Vikram Tiwari, Vanderbilt University Medical Center The department seeks research from academicians and practitioners that highlights Management Science based solutions directly relevant to the practice of healthcare. Relevance is judged by the impact on practice, as well as the degree to which researchers engaged with practitioners in understanding the problem context and in developing the solution. Validity, that is, the extent to which the results presented do or would apply in practice is a key evaluation criterion. In addition to meeting the journal’s standards of originality and substantial contribution to knowledge creation, research that can be replicated in other organizations is encouraged. Papers describing unsuccessful applied research projects may be considered if there are generalizable learning points addressing why the project was unsuccessful. Health Care Productivity Analysis Departmental Editor: Jonas Schreyögg, University of Hamburg The department invites papers with rigorous methods and significant impact for policy and practice. Papers typically apply theory and techniques to measuring productivity in health care organizations and systems. The journal welcomes state-of-the-art parametric as well as non-parametric techniques such as data envelopment analysis, stochastic frontier analysis or partial frontier analysis. The contribution of papers can be manifold including new methodology, novel combination of existing methods or application of existing methods to new contexts. Empirical papers should produce results generalizable beyond a selected set of health care organizations. All papers should include a section on implications for management or policy to enhance productivity. Public Health Policy and Medical Decision Making Departmental Editors: Ebru Bish, University of Alabama Julie L. Higle, University of Southern California The department invites high quality papers that use data-driven methods to address important problems that arise in public health policy and medical decision-making domains. We welcome submissions that develop and apply mathematical and computational models in support of data-driven and model-based analyses for these problems. The Public Health Policy and Medical Decision-Making Department is particularly interested in papers that: Study high-impact problems involving health policy, treatment planning and design, and clinical applications; Develop original data-driven models, including those that integrate disease modeling with screening and/or treatment guidelines; Use model-based analyses as decision making-tools to identify optimal solutions, insights, recommendations. Articles must clearly articulate the relevance of the work to decision and/or policy makers and the potential impact on patients and/or society. Papers will include articulated contributions within the methodological domain, which may include modeling, analytical, or computational methodologies. Emerging Topics Departmental Editor: Alec Morton, University of Strathclyde Emerging Topics will handle papers which use innovative quantitative methods to shed light on frontier issues in healthcare management and policy. Such papers may deal with analytic challenges arising from novel health technologies or new organizational forms. Papers falling under this department may also deal with the analysis of new forms of data which are increasingly captured as health systems become more and more digitized.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信