TALAIA: a 3D visual dictionary for protein structures.

IF 4.4 3区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Mercè Alemany-Chavarria, Jaime Rodríguez-Guerra, Jean-Didier Maréchal
{"title":"TALAIA: a 3D visual dictionary for protein structures.","authors":"Mercè Alemany-Chavarria,&nbsp;Jaime Rodríguez-Guerra,&nbsp;Jean-Didier Maréchal","doi":"10.1093/bioinformatics/btad476","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Graphical analysis of the molecular structure of proteins can be very complex. Full-atom representations retain most geometric information but are generally crowded, and key structural patterns can be challenging to identify. Non-full-atom representations could be more instructive on physicochemical aspects but be insufficiently detailed regarding shapes (e.g. entity beans-like models in coarse grain approaches) or simple properties of amino acids (e.g. representation of superficial electrostatic properties). In this work, we present TALAIA a visual dictionary that aims to provide another layer of structural representations.TALAIA offers a visual grammar that combines simple representations of amino acids while retaining their general geometry and physicochemical properties. It uses unique objects, with differentiated shapes and colors to represent amino acids. It makes easier to spot crucial molecular information, including patches of amino acids or key interactions between side chains. Most conventions used in TALAIA are standard in chemistry and biochemistry, so experimentalists and modelers can rapidly grasp the meaning of any TALAIA depiction.</p><p><strong>Results: </strong>We propose TALAIA as a tool that renders protein structures and encodes structure and physicochemical aspects as a simple visual grammar. The approach is fast, highly informative, and intuitive, allowing the identification of possible interactions, hydrophobic patches, and other characteristic structural features at first glance. The first implementation of TALAIA can be found at https://github.com/insilichem/talaia.</p>","PeriodicalId":8903,"journal":{"name":"Bioinformatics","volume":"39 8","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10423020/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btad476","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: Graphical analysis of the molecular structure of proteins can be very complex. Full-atom representations retain most geometric information but are generally crowded, and key structural patterns can be challenging to identify. Non-full-atom representations could be more instructive on physicochemical aspects but be insufficiently detailed regarding shapes (e.g. entity beans-like models in coarse grain approaches) or simple properties of amino acids (e.g. representation of superficial electrostatic properties). In this work, we present TALAIA a visual dictionary that aims to provide another layer of structural representations.TALAIA offers a visual grammar that combines simple representations of amino acids while retaining their general geometry and physicochemical properties. It uses unique objects, with differentiated shapes and colors to represent amino acids. It makes easier to spot crucial molecular information, including patches of amino acids or key interactions between side chains. Most conventions used in TALAIA are standard in chemistry and biochemistry, so experimentalists and modelers can rapidly grasp the meaning of any TALAIA depiction.

Results: We propose TALAIA as a tool that renders protein structures and encodes structure and physicochemical aspects as a simple visual grammar. The approach is fast, highly informative, and intuitive, allowing the identification of possible interactions, hydrophobic patches, and other characteristic structural features at first glance. The first implementation of TALAIA can be found at https://github.com/insilichem/talaia.

Abstract Image

Abstract Image

Abstract Image

TALAIA:蛋白质结构的3D视觉词典。
动机:蛋白质分子结构的图形分析可能非常复杂。全原子表示保留了大部分几何信息,但通常很拥挤,关键的结构模式很难识别。非全原子表示在物理化学方面可能更有指导意义,但在形状(例如粗粒方法中的实体豆状模型)或氨基酸的简单性质(例如表面静电性质的表示)方面不够详细。在这项工作中,我们为TALAIA提供了一个视觉词典,旨在提供另一层结构表示。TALAIA提供了一种视觉语法,它结合了氨基酸的简单表示,同时保留了它们的一般几何和物理化学性质。它使用独特的物体,用不同的形状和颜色来代表氨基酸。它可以更容易地发现关键的分子信息,包括氨基酸斑块或侧链之间的关键相互作用。TALAIA中使用的大多数惯例都是化学和生物化学的标准,因此实验人员和建模人员可以快速掌握任何TALAIA描述的含义。结果:我们提出TALAIA作为一个工具,呈现蛋白质结构和编码结构和物理化学方面作为一个简单的视觉语法。该方法快速,信息量大,直观,允许第一眼识别可能的相互作用,疏水斑块和其他特征结构特征。TALAIA的第一个实现可以在https://github.com/insilichem/talaia找到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioinformatics
Bioinformatics 生物-生化研究方法
CiteScore
11.20
自引率
5.20%
发文量
753
审稿时长
2.1 months
期刊介绍: The leading journal in its field, Bioinformatics publishes the highest quality scientific papers and review articles of interest to academic and industrial researchers. Its main focus is on new developments in genome bioinformatics and computational biology. Two distinct sections within the journal - Discovery Notes and Application Notes- focus on shorter papers; the former reporting biologically interesting discoveries using computational methods, the latter exploring the applications used for experiments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信