Computational drug discovery under RNA times.

Q3 Biochemistry, Genetics and Molecular Biology
QRB Discovery Pub Date : 2022-01-01 DOI:10.1017/qrd.2022.20
Mattia Bernetti, Riccardo Aguti, Stefano Bosio, Maurizio Recanatini, Matteo Masetti, Andrea Cavalli
{"title":"Computational drug discovery under RNA times.","authors":"Mattia Bernetti,&nbsp;Riccardo Aguti,&nbsp;Stefano Bosio,&nbsp;Maurizio Recanatini,&nbsp;Matteo Masetti,&nbsp;Andrea Cavalli","doi":"10.1017/qrd.2022.20","DOIUrl":null,"url":null,"abstract":"<p><p>RNA molecules play many functional and regulatory roles in cells, and hence, have gained considerable traction in recent times as therapeutic interventions. Within drug discovery, structure-based approaches have successfully identified potent and selective small-molecule modulators of pharmaceutically relevant protein targets. Here, we embrace the perspective of computational chemists who use these traditional approaches, and we discuss the challenges of extending these methods to target RNA molecules. In particular, we focus on recognition between RNA and small-molecule binders, on selectivity, and on the expected properties of RNA ligands.</p>","PeriodicalId":34636,"journal":{"name":"QRB Discovery","volume":"3 ","pages":"e22"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10392680/pdf/","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"QRB Discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/qrd.2022.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 2

Abstract

RNA molecules play many functional and regulatory roles in cells, and hence, have gained considerable traction in recent times as therapeutic interventions. Within drug discovery, structure-based approaches have successfully identified potent and selective small-molecule modulators of pharmaceutically relevant protein targets. Here, we embrace the perspective of computational chemists who use these traditional approaches, and we discuss the challenges of extending these methods to target RNA molecules. In particular, we focus on recognition between RNA and small-molecule binders, on selectivity, and on the expected properties of RNA ligands.

Abstract Image

Abstract Image

Abstract Image

RNA时代的计算药物发现。
RNA分子在细胞中发挥着许多功能和调节作用,因此近年来作为治疗干预手段获得了相当大的关注。在药物发现中,基于结构的方法已经成功地确定了药物相关蛋白靶点的有效和选择性小分子调节剂。在这里,我们接受了使用这些传统方法的计算化学家的观点,并讨论了将这些方法扩展到靶向RNA分子的挑战。特别是,我们专注于RNA和小分子结合物之间的识别,选择性和RNA配体的预期性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
QRB Discovery
QRB Discovery Biochemistry, Genetics and Molecular Biology-Biophysics
CiteScore
3.60
自引率
0.00%
发文量
18
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信