Interplay of heavy chain introns influences efficient transcript splicing and affects product quality of recombinant biotherapeutic antibodies from CHO cells.

IF 5.6 2区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
mAbs Pub Date : 2023-01-01 DOI:10.1080/19420862.2023.2242548
Emma Kelsall, Claire Harris, Titash Sen, Diane Hatton, Sarah Dunn, Suzanne Gibson
{"title":"Interplay of heavy chain introns influences efficient transcript splicing and affects product quality of recombinant biotherapeutic antibodies from CHO cells.","authors":"Emma Kelsall,&nbsp;Claire Harris,&nbsp;Titash Sen,&nbsp;Diane Hatton,&nbsp;Sarah Dunn,&nbsp;Suzanne Gibson","doi":"10.1080/19420862.2023.2242548","DOIUrl":null,"url":null,"abstract":"<p><p>Introns are included in genes encoding therapeutic proteins for their well-documented function of boosting expression. However, mis-splicing of introns in recombinant immunoglobulin (IgG) heavy chain (HC) transcripts can produce amino acid sequence product variants. These variants can affect product quality; therefore, purification process optimization may be needed to remove them, or if they cannot be removed, then in-depth characterization must be carried out to understand their effects on biological activity. In this study, HC transgene engineering approaches were investigated and were successful in significantly reducing the previously identified IgG HC splice variants to <0.5%. Subsequently, a comprehensive evaluation was conducted to understand the influence of the different introns in the HC genes on the expression of recombinant biotherapeutic antibodies. The data revealed an unexpected cooperation between specific introns for efficient splicing, where intron retention led to significant reductions in IgG expression of up to 75% for some intron combinations. Furthermore, it was shown that HC introns could be fully removed without significantly affecting productivity. This work paves the way for future biotherapeutic antibody transgene design with regard to inclusion of HC introns. By removing unnecessary introns, transgene mRNA transcript will no longer be mis-spliced, thereby eliminating HC splice variants and improving antibody product quality.</p>","PeriodicalId":18206,"journal":{"name":"mAbs","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/f5/c6/KMAB_15_2242548.PMC10413919.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"mAbs","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/19420862.2023.2242548","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Introns are included in genes encoding therapeutic proteins for their well-documented function of boosting expression. However, mis-splicing of introns in recombinant immunoglobulin (IgG) heavy chain (HC) transcripts can produce amino acid sequence product variants. These variants can affect product quality; therefore, purification process optimization may be needed to remove them, or if they cannot be removed, then in-depth characterization must be carried out to understand their effects on biological activity. In this study, HC transgene engineering approaches were investigated and were successful in significantly reducing the previously identified IgG HC splice variants to <0.5%. Subsequently, a comprehensive evaluation was conducted to understand the influence of the different introns in the HC genes on the expression of recombinant biotherapeutic antibodies. The data revealed an unexpected cooperation between specific introns for efficient splicing, where intron retention led to significant reductions in IgG expression of up to 75% for some intron combinations. Furthermore, it was shown that HC introns could be fully removed without significantly affecting productivity. This work paves the way for future biotherapeutic antibody transgene design with regard to inclusion of HC introns. By removing unnecessary introns, transgene mRNA transcript will no longer be mis-spliced, thereby eliminating HC splice variants and improving antibody product quality.

Abstract Image

Abstract Image

Abstract Image

重链内含子的插入影响有效的转录物剪接,并影响来自CHO细胞的重组生物治疗抗体的产品质量。
内含子被包含在编码治疗蛋白的基因中,因为它们具有充分证明的促进表达的功能。然而,重组免疫球蛋白(IgG)重链(HC)转录物中内含子的错误剪接可以产生氨基酸序列产物变体。这些变体可能会影响产品质量;因此,可能需要优化纯化工艺来去除它们,或者如果不能去除,则必须进行深入的表征,以了解它们对生物活性的影响。在这项研究中,研究了HC转基因工程方法,并成功地将先前鉴定的IgG HC剪接变异体显著减少到
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
mAbs
mAbs 工程技术-仪器仪表
CiteScore
10.70
自引率
11.30%
发文量
77
审稿时长
6-12 weeks
期刊介绍: mAbs is a multi-disciplinary journal dedicated to the art and science of antibody research and development. The journal has a strong scientific and medical focus, but also strives to serve a broader readership. The articles are thus of interest to scientists, clinical researchers, and physicians, as well as the wider mAb community, including our readers involved in technology transfer, legal issues, investment, strategic planning and the regulation of therapeutics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信