Current aspects of small extracellular vesicles in pain process and relief.

IF 11.3 1区 医学 Q1 Medicine
Lanyu Zhang, Jin Liu, Cheng Zhou
{"title":"Current aspects of small extracellular vesicles in pain process and relief.","authors":"Lanyu Zhang, Jin Liu, Cheng Zhou","doi":"10.1186/s40824-023-00417-3","DOIUrl":null,"url":null,"abstract":"<p><p>Small extracellular vesicles (sEVs) have been identified as a noteworthy paracrine mechanism of intercellular communication in diagnosing and managing neurological disorders. Current research suggests that sEVs play a pivotal role in the pathological progression of pain, emphasizing their critical function in the pathological progression of pain in acute and chronic pain models. By facilitating the transfer of diverse molecules, such as proteins, nucleic acids, and metabolites, sEVs can modulate pain signaling transmission in both the central and peripheral nervous systems. Furthermore, the unique molecules conveyed by sEVs in pain disorders indicate their potential as diagnostic biomarkers. The application of sEVs derived from mesenchymal stem cells (MSCs) in regenerative pain medicine has emerged as a promising strategy for pain management. Moreover, modified sEVs have garnered considerable attention in the investigation of pathological processes and therapeutic interventions. This review presents a comprehensive overview of the current knowledge regarding the involvement of sEVs in pain pathogenesis and treatment. Nevertheless, additional research is imperative to facilitate their clinical implementation. Schematic diagram of sEVs in the biogenesis, signal transmission, diagnosis, and treatment of pain disorders. Small extracellular vesicles (sEVs) are secreted by multiple cells, loading with various biomolecules, such as miRNAs, transmembrane proteins, and amino acids. They selectively target other cells and regulating pain signal transmission. The composition of sEVs can serve as valuable biomarkers for pain diagnosis. In particular, mesenchymal stem cell-derived sEVs have shown promise as regenerative medicine for managing multiple pain disorders. Furthermore, by modifying the structure or contents of sEVs, they could potentially be used as a potent analgesic method.</p>","PeriodicalId":9079,"journal":{"name":"Biomaterials Research","volume":"27 1","pages":"78"},"PeriodicalIF":11.3000,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10416402/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s40824-023-00417-3","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Small extracellular vesicles (sEVs) have been identified as a noteworthy paracrine mechanism of intercellular communication in diagnosing and managing neurological disorders. Current research suggests that sEVs play a pivotal role in the pathological progression of pain, emphasizing their critical function in the pathological progression of pain in acute and chronic pain models. By facilitating the transfer of diverse molecules, such as proteins, nucleic acids, and metabolites, sEVs can modulate pain signaling transmission in both the central and peripheral nervous systems. Furthermore, the unique molecules conveyed by sEVs in pain disorders indicate their potential as diagnostic biomarkers. The application of sEVs derived from mesenchymal stem cells (MSCs) in regenerative pain medicine has emerged as a promising strategy for pain management. Moreover, modified sEVs have garnered considerable attention in the investigation of pathological processes and therapeutic interventions. This review presents a comprehensive overview of the current knowledge regarding the involvement of sEVs in pain pathogenesis and treatment. Nevertheless, additional research is imperative to facilitate their clinical implementation. Schematic diagram of sEVs in the biogenesis, signal transmission, diagnosis, and treatment of pain disorders. Small extracellular vesicles (sEVs) are secreted by multiple cells, loading with various biomolecules, such as miRNAs, transmembrane proteins, and amino acids. They selectively target other cells and regulating pain signal transmission. The composition of sEVs can serve as valuable biomarkers for pain diagnosis. In particular, mesenchymal stem cell-derived sEVs have shown promise as regenerative medicine for managing multiple pain disorders. Furthermore, by modifying the structure or contents of sEVs, they could potentially be used as a potent analgesic method.

当前小细胞外囊泡在疼痛过程和缓解中的作用。
小细胞外囊泡(sev)已被确定为诊断和治疗神经系统疾病的细胞间通讯的重要旁分泌机制。目前的研究表明,sev在疼痛的病理进展中起着关键作用,强调了它们在急性和慢性疼痛模型中疼痛病理进展中的关键作用。通过促进多种分子的转移,如蛋白质、核酸和代谢物,sev可以调节中枢和外周神经系统的疼痛信号传递。此外,sev在疼痛障碍中传递的独特分子表明它们具有作为诊断生物标志物的潜力。来自间充质干细胞(MSCs)的sev在再生疼痛医学中的应用已经成为一种有前途的疼痛管理策略。此外,改良的sev在病理过程和治疗干预的研究中引起了相当大的关注。本文综述了目前关于sev参与疼痛发病机制和治疗的知识。然而,进一步的研究是必要的,以促进其临床应用。sev在疼痛障碍的生物发生、信号传递、诊断和治疗中的作用示意图。小细胞外囊泡(sev)由多个细胞分泌,装载各种生物分子,如mirna、跨膜蛋白和氨基酸。它们选择性地靶向其他细胞并调节疼痛信号的传递。sev的组成可以作为疼痛诊断的有价值的生物标志物。特别是,间充质干细胞衍生的sev已经显示出作为治疗多种疼痛疾病的再生药物的前景。此外,通过改变sev的结构或内容,它们可能被用作一种有效的镇痛方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomaterials Research
Biomaterials Research Medicine-Medicine (miscellaneous)
CiteScore
10.20
自引率
3.50%
发文量
63
审稿时长
30 days
期刊介绍: Biomaterials Research, the official journal of the Korean Society for Biomaterials, is an open-access interdisciplinary publication that focuses on all aspects of biomaterials research. The journal covers a wide range of topics including novel biomaterials, advanced techniques for biomaterial synthesis and fabrication, and their application in biomedical fields. Specific areas of interest include functional biomaterials, drug and gene delivery systems, tissue engineering, nanomedicine, nano/micro-biotechnology, bio-imaging, regenerative medicine, medical devices, 3D printing, and stem cell research. By exploring these research areas, Biomaterials Research aims to provide valuable insights and promote advancements in the biomaterials field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信