Jamie E Hibbert, Anthony S Kulas, Patrick M Rider, Zachary J Domire
{"title":"Practice day may be unnecessary prior to testing knee extensor strength in young healthy adults.","authors":"Jamie E Hibbert, Anthony S Kulas, Patrick M Rider, Zachary J Domire","doi":"10.1080/23335432.2020.1766997","DOIUrl":null,"url":null,"abstract":"<p><p>A practice session is common prior to strength testing. However, the benefits of practice have not been previously reported. The purpose of this study was to determine the effect of a practice session on peak torque, mean torque and between trial variability across three test days. We hypothesized that peak and mean torque would be higher and less variable the second and third test days than the first. Twenty-five healthy, young participants completed 3 maximal voluntary isometric and isokinetic knee extensions on three separate days. No difference in isometric torque was found between days 1 and 2, but there was a significant decrease in isokinetic torque (8.45 Nm). There was a significant decrease in both mean isometric and isokinetic torque from day 1 to day 3 (12.67 and 13.59 Nm). Contrary to our hypothesis, no benefit from a practice session was found. Healthy, young adults are able to produce peak knee extensor torques on the first day of testing and do not demonstrate any benefit from additional testing. Thus, a practice day preceding isometric and isokinetic knee extensor strength testing may not be necessary when testing healthy, young participants, and may, in fact, negatively impact subsequent strength measurements.</p>","PeriodicalId":52124,"journal":{"name":"International Biomechanics","volume":"7 1","pages":"58-65"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/23335432.2020.1766997","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Biomechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23335432.2020.1766997","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 4
Abstract
A practice session is common prior to strength testing. However, the benefits of practice have not been previously reported. The purpose of this study was to determine the effect of a practice session on peak torque, mean torque and between trial variability across three test days. We hypothesized that peak and mean torque would be higher and less variable the second and third test days than the first. Twenty-five healthy, young participants completed 3 maximal voluntary isometric and isokinetic knee extensions on three separate days. No difference in isometric torque was found between days 1 and 2, but there was a significant decrease in isokinetic torque (8.45 Nm). There was a significant decrease in both mean isometric and isokinetic torque from day 1 to day 3 (12.67 and 13.59 Nm). Contrary to our hypothesis, no benefit from a practice session was found. Healthy, young adults are able to produce peak knee extensor torques on the first day of testing and do not demonstrate any benefit from additional testing. Thus, a practice day preceding isometric and isokinetic knee extensor strength testing may not be necessary when testing healthy, young participants, and may, in fact, negatively impact subsequent strength measurements.
期刊介绍:
International Biomechanics is a fully Open Access biomechanics journal that aims to foster innovation, debate and collaboration across the full spectrum of biomechanics. We publish original articles, reviews, and short communications in all areas of biomechanics and welcome papers that explore: Bio-fluid mechanics, Continuum Biomechanics, Biotribology, Cellular Biomechanics, Mechanobiology, Mechano-transduction, Tissue Mechanics, Comparative Biomechanics and Functional Anatomy, Allometry, Animal locomotion in biomechanics, Gait analysis in biomechanics, Musculoskeletal and Orthopaedic Biomechanics, Cardiovascular Biomechanics, Plant Biomechanics, Injury Biomechanics, Impact Biomechanics, Sport and Exercise Biomechanics, Kinesiology, Rehabilitation in biomechanics, Quantitative Ergonomics, Human Factors engineering, Occupational Biomechanics, Developmental Biomechanics.