{"title":"AN OMNIBUS TEST FOR DETECTION OF SUBGROUP TREATMENT EFFECTS VIA DATA PARTITIONING.","authors":"Yifei Sun, Xuming He, Jianhua Hu","doi":"10.1214/21-AOAS1589","DOIUrl":null,"url":null,"abstract":"<p><p>Late-stage clinical trials have been conducted primarily to establish the efficacy of a new treatment in an intended population. A corollary of population heterogeneity in clinical trials is that a treatment might be effective for one or more subgroups, rather than for the whole population of interest. As an example, the phase III clinical trial of panitumumab in metastatic colorectal cancer patients failed to demonstrate its efficacy in the overall population, but a subgroup associated with tumor KRAS status was found to be promising (Peeters et al. (<i>Am. J. Clin. Oncol.</i> 28 (2010) 4706-4713)). As we search for such subgroups via data partitioning based on a large number of biomarkers, we need to guard against inflated type I error rates due to multiple testing. Commonly-used multiplicity adjustments tend to lose power for the detection of subgroup treatment effects. We develop an effective omnibus test to detect the existence of, at least, one subgroup treatment effect, allowing a large number of possible subgroups to be considered and possibly censored outcomes. Applied to the panitumumab trial data, the proposed test would confirm a significant subgroup treatment effect. Empirical studies also show that the proposed test is applicable to a variety of outcome variables and maintains robust statistical power.</p>","PeriodicalId":50772,"journal":{"name":"Annals of Applied Statistics","volume":"16 4","pages":"2266-2278"},"PeriodicalIF":1.3000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10381789/pdf/nihms-1919024.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Applied Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/21-AOAS1589","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/9/26 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
Late-stage clinical trials have been conducted primarily to establish the efficacy of a new treatment in an intended population. A corollary of population heterogeneity in clinical trials is that a treatment might be effective for one or more subgroups, rather than for the whole population of interest. As an example, the phase III clinical trial of panitumumab in metastatic colorectal cancer patients failed to demonstrate its efficacy in the overall population, but a subgroup associated with tumor KRAS status was found to be promising (Peeters et al. (Am. J. Clin. Oncol. 28 (2010) 4706-4713)). As we search for such subgroups via data partitioning based on a large number of biomarkers, we need to guard against inflated type I error rates due to multiple testing. Commonly-used multiplicity adjustments tend to lose power for the detection of subgroup treatment effects. We develop an effective omnibus test to detect the existence of, at least, one subgroup treatment effect, allowing a large number of possible subgroups to be considered and possibly censored outcomes. Applied to the panitumumab trial data, the proposed test would confirm a significant subgroup treatment effect. Empirical studies also show that the proposed test is applicable to a variety of outcome variables and maintains robust statistical power.
期刊介绍:
Statistical research spans an enormous range from direct subject-matter collaborations to pure mathematical theory. The Annals of Applied Statistics, the newest journal from the IMS, is aimed at papers in the applied half of this range. Published quarterly in both print and electronic form, our goal is to provide a timely and unified forum for all areas of applied statistics.