{"title":"The impact of leptin on sperm.","authors":"Fayez A Almabhouh, Harbindar Jeet Singh","doi":"10.1071/RD22222","DOIUrl":null,"url":null,"abstract":"<p><p>Despite its important role in numerous physiological functions, including regulation of appetite and body weight, immune function and normal sexual maturation, raised leptin levels could result in significant damaging effects on sperm. The adverse effects of leptin on the male reproductive system result from its direct actions on the reproductive organs and cells instead of the hypothalamus-pituitary-gonadal axis. Binding of leptin to the receptors in the seminiferous tubular cells of the testes increases free radical production and decreases the gene expression and activity of endogenous enzymatic antioxidants. These effects are mediated via the PI3K pathway. The resultant oxidative stress causes significant damage to the seminiferous tubular cells, germ cells and sperm DNA leading to apoptosis, increased sperm DNA fragmentation, decreased sperm count, increased fraction of sperm with abnormal morphology, and decreased seminiferous tubular height and diameter. This review summarises the evidence in the literature on the adverse effects of leptin on sperm, which could underlie the often-reported sperm abnormalities in obese hyperleptinaemic infertile males. Although leptin is necessary for normal reproductive function, its raised levels could be pathologic. There is, therefore, a need to identify the cut-off level in the serum and seminal fluid above which leptin becomes pathological for better management of leptin associated adverse effects on male reproductive function.</p>","PeriodicalId":20932,"journal":{"name":"Reproduction, fertility, and development","volume":"35 8","pages":"459-468"},"PeriodicalIF":1.8000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reproduction, fertility, and development","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1071/RD22222","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Despite its important role in numerous physiological functions, including regulation of appetite and body weight, immune function and normal sexual maturation, raised leptin levels could result in significant damaging effects on sperm. The adverse effects of leptin on the male reproductive system result from its direct actions on the reproductive organs and cells instead of the hypothalamus-pituitary-gonadal axis. Binding of leptin to the receptors in the seminiferous tubular cells of the testes increases free radical production and decreases the gene expression and activity of endogenous enzymatic antioxidants. These effects are mediated via the PI3K pathway. The resultant oxidative stress causes significant damage to the seminiferous tubular cells, germ cells and sperm DNA leading to apoptosis, increased sperm DNA fragmentation, decreased sperm count, increased fraction of sperm with abnormal morphology, and decreased seminiferous tubular height and diameter. This review summarises the evidence in the literature on the adverse effects of leptin on sperm, which could underlie the often-reported sperm abnormalities in obese hyperleptinaemic infertile males. Although leptin is necessary for normal reproductive function, its raised levels could be pathologic. There is, therefore, a need to identify the cut-off level in the serum and seminal fluid above which leptin becomes pathological for better management of leptin associated adverse effects on male reproductive function.
期刊介绍:
Reproduction, Fertility and Development is an international journal for the publication of original and significant contributions on vertebrate reproductive and developmental biology. Subject areas include, but are not limited to: physiology, biochemistry, cell and molecular biology, endocrinology, genetics and epigenetics, behaviour, immunology and the development of reproductive technologies in humans, livestock and wildlife, and in pest management.
Reproduction, Fertility and Development is a valuable resource for research scientists working in industry or academia on reproductive and developmental biology, clinicians and veterinarians interested in the basic science underlying their disciplines, and students.
Reproduction, Fertility and Development is the official journal of the International Embryo Technology Society and the Society for Reproductive Biology.
Reproduction, Fertility and Development is published with the endorsement of the Commonwealth Scientific and Industrial Research Organisation (CSIRO) and the Australian Academy of Science.