Alex A Nguyen, Anne Marie McCarthy, Despina Kontos
{"title":"Combining Molecular and Radiomic Features for Risk Assessment in Breast Cancer.","authors":"Alex A Nguyen, Anne Marie McCarthy, Despina Kontos","doi":"10.1146/annurev-biodatasci-020722-092748","DOIUrl":null,"url":null,"abstract":"<p><p>Breast cancer risk is highly variable within the population and current research is leading the shift toward personalized medicine. By accurately assessing an individual woman's risk, we can reduce the risk of over/undertreatment by preventing unnecessary procedures or by elevating screening procedures. Breast density measured from conventional mammography has been established as one of the most dominant risk factors for breast cancer; however, it is currently limited by its ability to characterize more complex breast parenchymal patterns that have been shown to provide additional information to strengthen cancer risk models. Molecular factors ranging from high penetrance, or high likelihood that a mutation will show signs and symptoms of the disease, to combinations of gene mutations with low penetrance have shown promise for augmenting risk assessment. Although imaging biomarkers and molecular biomarkers have both individually demonstrated improved performance in risk assessment, few studies have evaluated them together. This review aims to highlight the current state of the art in breast cancer risk assessment using imaging and genetic biomarkers.</p>","PeriodicalId":29775,"journal":{"name":"Annual Review of Biomedical Data Science","volume":null,"pages":null},"PeriodicalIF":7.0000,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Biomedical Data Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1146/annurev-biodatasci-020722-092748","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Breast cancer risk is highly variable within the population and current research is leading the shift toward personalized medicine. By accurately assessing an individual woman's risk, we can reduce the risk of over/undertreatment by preventing unnecessary procedures or by elevating screening procedures. Breast density measured from conventional mammography has been established as one of the most dominant risk factors for breast cancer; however, it is currently limited by its ability to characterize more complex breast parenchymal patterns that have been shown to provide additional information to strengthen cancer risk models. Molecular factors ranging from high penetrance, or high likelihood that a mutation will show signs and symptoms of the disease, to combinations of gene mutations with low penetrance have shown promise for augmenting risk assessment. Although imaging biomarkers and molecular biomarkers have both individually demonstrated improved performance in risk assessment, few studies have evaluated them together. This review aims to highlight the current state of the art in breast cancer risk assessment using imaging and genetic biomarkers.
期刊介绍:
The Annual Review of Biomedical Data Science provides comprehensive expert reviews in biomedical data science, focusing on advanced methods to store, retrieve, analyze, and organize biomedical data and knowledge. The scope of the journal encompasses informatics, computational, artificial intelligence (AI), and statistical approaches to biomedical data, including the sub-fields of bioinformatics, computational biology, biomedical informatics, clinical and clinical research informatics, biostatistics, and imaging informatics. The mission of the journal is to identify both emerging and established areas of biomedical data science, and the leaders in these fields.