{"title":"Effects of different food hardness on cognitive inhibitory control function","authors":"Suzuha Kidoura, Yumeno Higuchi, Naoto Sato, Risa Santa, Mana Miyamoto, Kenichi Shibuya","doi":"10.1111/jtxs.12794","DOIUrl":null,"url":null,"abstract":"<p>Mastication leads to an immediate enhancement in cognitive functions, including inhibitory control. Furthermore, the hardness of the food increases sympathetic nerve activity during and immediately after mastication. Hence, the cognitive function could be enhanced by increased sympathetic nerve activity. The present study aimed to investigate the effects of food hardness on cognitive inhibitory control function in humans. The participants were 23 healthy adults (19–22 years old). Experiments were conducted with two types of gummies (soft and hard). The participants ingested 13 g of gummies and performed a stop-signal task to measure cognitive inhibitory control function after they rested for 5 min. The reaction time for the stop-signal task after gummy consumption was significantly shorter in the hard gummy condition compared to the soft gummy condition (<i>p</i> < .05). Furthermore, the accuracy rate of the responses was also significantly higher in the hard gummy condition compared to the soft gummy condition (<i>p</i> < .05). The results of the present study suggest that food hardness enhances cognitive inhibitory control function in humans.</p>","PeriodicalId":17175,"journal":{"name":"Journal of texture studies","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of texture studies","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jtxs.12794","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Mastication leads to an immediate enhancement in cognitive functions, including inhibitory control. Furthermore, the hardness of the food increases sympathetic nerve activity during and immediately after mastication. Hence, the cognitive function could be enhanced by increased sympathetic nerve activity. The present study aimed to investigate the effects of food hardness on cognitive inhibitory control function in humans. The participants were 23 healthy adults (19–22 years old). Experiments were conducted with two types of gummies (soft and hard). The participants ingested 13 g of gummies and performed a stop-signal task to measure cognitive inhibitory control function after they rested for 5 min. The reaction time for the stop-signal task after gummy consumption was significantly shorter in the hard gummy condition compared to the soft gummy condition (p < .05). Furthermore, the accuracy rate of the responses was also significantly higher in the hard gummy condition compared to the soft gummy condition (p < .05). The results of the present study suggest that food hardness enhances cognitive inhibitory control function in humans.
期刊介绍:
The Journal of Texture Studies is a fully peer-reviewed international journal specialized in the physics, physiology, and psychology of food oral processing, with an emphasis on the food texture and structure, sensory perception and mouth-feel, food oral behaviour, food liking and preference. The journal was first published in 1969 and has been the primary source for disseminating advances in knowledge on all of the sciences that relate to food texture. In recent years, Journal of Texture Studies has expanded its coverage to a much broader range of texture research and continues to publish high quality original and innovative experimental-based (including numerical analysis and simulation) research concerned with all aspects of eating and food preference.
Journal of Texture Studies welcomes research articles, research notes, reviews, discussion papers, and communications from contributors of all relevant disciplines. Some key coverage areas/topics include (but not limited to):
• Physical, mechanical, and micro-structural principles of food texture
• Oral physiology
• Psychology and brain responses of eating and food sensory
• Food texture design and modification for specific consumers
• In vitro and in vivo studies of eating and swallowing
• Novel technologies and methodologies for the assessment of sensory properties
• Simulation and numerical analysis of eating and swallowing