{"title":"Tetrahydroxystilbene Glucoside Attenuates Oxidative Stress-Induced Aging by Regulating Oxidation Resistance and Inflammation in Larval Zebrafish.","authors":"Hui Xia, Xue Cheng, Mengxi Cao, Xiongjie Sun, Fuyi He, Xiaowei Yao, Hongtao Liu","doi":"10.1089/zeb.2022.0045","DOIUrl":null,"url":null,"abstract":"<p><p>Population aging is a global problem worldwide, and the discovery of antiaging drugs and knowledge of their potential molecular mechanisms are research hotspots in biomedical field. Tetrahydroxystilbene glucoside (TSG) is a natural component isolated from Heshouwu (<i>Polygonum multiflorum</i> Thunb.). It has been widely used to treat various chronic diseases for its remarkable biological activities. In this study, we successfully established aging larval zebrafish by exposing larvae to 2 mM hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>). Using this aging model, we assessed the antiaging effect of TSG with different concentrations (25-100 μg/mL). After being treated with H<sub>2</sub>O<sub>2</sub>, zebrafish showed the obvious aging-associated phenotypes characterized by higher senescence-associated β-galactosidase activity, significantly downregulated expression of sirtuin 1 (<i>sirt1</i>) and telomerase reverse transcriptase (<i>tert</i>), and upregulated <i>serpine1</i> mRNA level compared to the control group. TSG pretreatment delayed the aging process of oxidative stress-induced zebrafish, indicative of the reduced positive rate of senescence-associated β-galactosidase, improved swimming velocity, and stimulus-response capacity. Further studies proved that TSG could suppress reactive oxygen species production and enhance the activity of antioxidant enzymes superoxide dismutase and catalase. TSG also inhibited the H<sub>2</sub>O<sub>2</sub>-induced expressions of inflammation-related genes <i>il-1β</i>, <i>il-6</i>, <i>cxcl</i>-<i>c1c</i>, and <i>il</i>-<i>8</i> in aging zebrafish, but it did not affect apoptosis-related genes (<i>bcl-2</i>, <i>bax</i>, and <i>caspase-3</i>) of aging zebrafish. In conclusion, TSG can protect against aging by regulating the antioxidative genes and enzyme activity, as well as inflammation in larval zebrafish, providing insight into the application of TSG for clinical treatment of aging or aging-related diseases.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/zeb.2022.0045","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Population aging is a global problem worldwide, and the discovery of antiaging drugs and knowledge of their potential molecular mechanisms are research hotspots in biomedical field. Tetrahydroxystilbene glucoside (TSG) is a natural component isolated from Heshouwu (Polygonum multiflorum Thunb.). It has been widely used to treat various chronic diseases for its remarkable biological activities. In this study, we successfully established aging larval zebrafish by exposing larvae to 2 mM hydrogen peroxide (H2O2). Using this aging model, we assessed the antiaging effect of TSG with different concentrations (25-100 μg/mL). After being treated with H2O2, zebrafish showed the obvious aging-associated phenotypes characterized by higher senescence-associated β-galactosidase activity, significantly downregulated expression of sirtuin 1 (sirt1) and telomerase reverse transcriptase (tert), and upregulated serpine1 mRNA level compared to the control group. TSG pretreatment delayed the aging process of oxidative stress-induced zebrafish, indicative of the reduced positive rate of senescence-associated β-galactosidase, improved swimming velocity, and stimulus-response capacity. Further studies proved that TSG could suppress reactive oxygen species production and enhance the activity of antioxidant enzymes superoxide dismutase and catalase. TSG also inhibited the H2O2-induced expressions of inflammation-related genes il-1β, il-6, cxcl-c1c, and il-8 in aging zebrafish, but it did not affect apoptosis-related genes (bcl-2, bax, and caspase-3) of aging zebrafish. In conclusion, TSG can protect against aging by regulating the antioxidative genes and enzyme activity, as well as inflammation in larval zebrafish, providing insight into the application of TSG for clinical treatment of aging or aging-related diseases.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.