{"title":"Whole-genome sequencing and genomic analysis of Norduz goat (Capra hircus).","authors":"Mevlüt Arslan","doi":"10.1007/s00335-023-09990-3","DOIUrl":null,"url":null,"abstract":"<p><p>Artificial and natural selective breeding of goats has resulted in many different goat breeds all around the world. Norduz goat is one of these breeds, and it is a local goat breed of Turkey. The goats are favorable due to pre-weaning viability and reproduction values compared to the regional breeds. Development in sequencing technologies has let to understand huge genomic structures and complex phenotypes. Until now, such a comprehensive study has not been carried out to understand the genomic structure of the Norduz goats, yet. In the study, the next-generation sequencing was carried out to understand the genomic structure of Norduz goat. Real-time PCR was used to evaluate prominent CNVs in the Norduz goat individuals. Whole genome of the goat was constructed with an average of 33.1X coverage level. In the stringent filtering condition, 9,757,980 SNPs, 1,536,715 InDels, and 290 CNVs were detected in the Norduz goat genome. Functional analysis of high-impact SNP variations showed that the classical complement activation biological process was affected significantly in the goat. CNVs in the goat genome were found in genes related to defense against viruses, immune response, and cell membrane transporters. It was shown that GBP2, GBP5, and mammalian ortholog GBP1, which are INF-stimulated GTPases, were found to be high copy numbers in the goats. To conclude, genetic variations mainly in immunological response processes suggest that Norduz goat is an immunologically improved goat breed and natural selection could take an important role in the genetical improvements of the goats.</p>","PeriodicalId":18259,"journal":{"name":"Mammalian Genome","volume":"34 3","pages":"437-448"},"PeriodicalIF":2.7000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mammalian Genome","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00335-023-09990-3","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Artificial and natural selective breeding of goats has resulted in many different goat breeds all around the world. Norduz goat is one of these breeds, and it is a local goat breed of Turkey. The goats are favorable due to pre-weaning viability and reproduction values compared to the regional breeds. Development in sequencing technologies has let to understand huge genomic structures and complex phenotypes. Until now, such a comprehensive study has not been carried out to understand the genomic structure of the Norduz goats, yet. In the study, the next-generation sequencing was carried out to understand the genomic structure of Norduz goat. Real-time PCR was used to evaluate prominent CNVs in the Norduz goat individuals. Whole genome of the goat was constructed with an average of 33.1X coverage level. In the stringent filtering condition, 9,757,980 SNPs, 1,536,715 InDels, and 290 CNVs were detected in the Norduz goat genome. Functional analysis of high-impact SNP variations showed that the classical complement activation biological process was affected significantly in the goat. CNVs in the goat genome were found in genes related to defense against viruses, immune response, and cell membrane transporters. It was shown that GBP2, GBP5, and mammalian ortholog GBP1, which are INF-stimulated GTPases, were found to be high copy numbers in the goats. To conclude, genetic variations mainly in immunological response processes suggest that Norduz goat is an immunologically improved goat breed and natural selection could take an important role in the genetical improvements of the goats.
期刊介绍:
Mammalian Genome focuses on the experimental, theoretical and technical aspects of genetics, genomics, epigenetics and systems biology in mouse, human and other mammalian species, with an emphasis on the relationship between genotype and phenotype, elucidation of biological and disease pathways as well as experimental aspects of interventions, therapeutics, and precision medicine. The journal aims to publish high quality original papers that present novel findings in all areas of mammalian genetic research as well as review articles on areas of topical interest. The journal will also feature commentaries and editorials to inform readers of breakthrough discoveries as well as issues of research standards, policies and ethics.