A global genetic interaction network by single-cell imaging and machine learning.

IF 9 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Florian Heigwer, Christian Scheeder, Josephine Bageritz, Schayan Yousefian, Benedikt Rauscher, Christina Laufer, Sergi Beneyto-Calabuig, Maja Christina Funk, Vera Peters, Maria Boulougouri, Jana Bilanovic, Thilo Miersch, Barbara Schmitt, Claudia Blass, Fillip Port, Michael Boutros
{"title":"A global genetic interaction network by single-cell imaging and machine learning.","authors":"Florian Heigwer,&nbsp;Christian Scheeder,&nbsp;Josephine Bageritz,&nbsp;Schayan Yousefian,&nbsp;Benedikt Rauscher,&nbsp;Christina Laufer,&nbsp;Sergi Beneyto-Calabuig,&nbsp;Maja Christina Funk,&nbsp;Vera Peters,&nbsp;Maria Boulougouri,&nbsp;Jana Bilanovic,&nbsp;Thilo Miersch,&nbsp;Barbara Schmitt,&nbsp;Claudia Blass,&nbsp;Fillip Port,&nbsp;Michael Boutros","doi":"10.1016/j.cels.2023.03.003","DOIUrl":null,"url":null,"abstract":"<p><p>Cellular and organismal phenotypes are controlled by complex gene regulatory networks. However, reference maps of gene function are still scarce across different organisms. Here, we generated synthetic genetic interaction and cell morphology profiles of more than 6,800 genes in cultured Drosophila cells. The resulting map of genetic interactions was used for machine learning-based gene function discovery, assigning functions to genes in 47 modules. Furthermore, we devised Cytoclass as a method to dissect genetic interactions for discrete cell states at the single-cell resolution. This approach identified an interaction of Cdk2 and the Cop9 signalosome complex, triggering senescence-associated secretory phenotypes and immunogenic conversion in hemocytic cells. Together, our data constitute a genome-scale resource of functional gene profiles to uncover the mechanisms underlying genetic interactions and their plasticity at the single-cell level.</p>","PeriodicalId":54348,"journal":{"name":"Cell Systems","volume":"14 5","pages":"346-362.e6"},"PeriodicalIF":9.0000,"publicationDate":"2023-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10206407/pdf/","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Systems","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cels.2023.03.003","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 3

Abstract

Cellular and organismal phenotypes are controlled by complex gene regulatory networks. However, reference maps of gene function are still scarce across different organisms. Here, we generated synthetic genetic interaction and cell morphology profiles of more than 6,800 genes in cultured Drosophila cells. The resulting map of genetic interactions was used for machine learning-based gene function discovery, assigning functions to genes in 47 modules. Furthermore, we devised Cytoclass as a method to dissect genetic interactions for discrete cell states at the single-cell resolution. This approach identified an interaction of Cdk2 and the Cop9 signalosome complex, triggering senescence-associated secretory phenotypes and immunogenic conversion in hemocytic cells. Together, our data constitute a genome-scale resource of functional gene profiles to uncover the mechanisms underlying genetic interactions and their plasticity at the single-cell level.

单细胞成像和机器学习的全球遗传相互作用网络。
细胞和生物体表型是由复杂的基因调控网络控制的。然而,不同生物间基因功能的参考图谱仍然很少。在这里,我们在培养的果蝇细胞中合成了超过6800个基因的遗传相互作用和细胞形态谱。由此产生的基因相互作用图谱用于基于机器学习的基因功能发现,为47个模块中的基因分配功能。此外,我们设计了Cytoclass作为在单细胞分辨率上剖析离散细胞状态的遗传相互作用的方法。该方法确定了Cdk2和Cop9信号体复合物的相互作用,在血细胞中触发衰老相关的分泌表型和免疫原性转化。总之,我们的数据构成了一个基因组规模的功能基因谱资源,以揭示遗传相互作用的机制及其在单细胞水平上的可塑性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Systems
Cell Systems Medicine-Pathology and Forensic Medicine
CiteScore
16.50
自引率
1.10%
发文量
84
审稿时长
42 days
期刊介绍: In 2015, Cell Systems was founded as a platform within Cell Press to showcase innovative research in systems biology. Our primary goal is to investigate complex biological phenomena that cannot be simply explained by basic mathematical principles. While the physical sciences have long successfully tackled such challenges, we have discovered that our most impactful publications often employ quantitative, inference-based methodologies borrowed from the fields of physics, engineering, mathematics, and computer science. We are committed to providing a home for elegant research that addresses fundamental questions in systems biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信