Tissue Perfusion and Diffusion and Cellular Respiration: Transport and Utilization of Oxygen.

IF 2.3 3区 医学 Q2 CRITICAL CARE MEDICINE
Connie C W Hsia
{"title":"Tissue Perfusion and Diffusion and Cellular Respiration: Transport and Utilization of Oxygen.","authors":"Connie C W Hsia","doi":"10.1055/s-0043-1770061","DOIUrl":null,"url":null,"abstract":"<p><p>This article provides an overview of the journey of inspired oxygen after its uptake across the alveolar-capillary interface, and the interplay among tissue perfusion, diffusion, and cellular respiration in the transport and utilization of oxygen. The critical interactions between oxygen and its facilitative carriers (hemoglobin in red blood cells and myoglobin in muscle cells), and with other respiratory and vasoactive molecules (carbon dioxide, nitric oxide, and carbon monoxide), are emphasized to illustrate how this versatile system dynamically optimizes regional convective transport and diffusive gas exchange. The rates of reciprocal gas exchange in the lung and the periphery must be well-matched and sufficient for meeting the range of energy demands from rest to maximal stress but not excessive as to become toxic. The mobile red blood cells play a vital role in matching tissue perfusion and gas exchange by dynamically regulating the controlled uptake of oxygen and communicating regional metabolic signals across different organs. Intracellular oxygen diffusion and facilitation via myoglobin into the mitochondria, and utilization via electron transport chain and oxidative phosphorylation, are summarized. Physiological and pathophysiological adaptations are briefly described. Dysfunction of any component across this integrated system affects all other components and elicits corresponding structural and functional adaptation aimed at matching the capacities across the entire system and restoring equilibrium under normal and pathological conditions.</p>","PeriodicalId":21727,"journal":{"name":"Seminars in respiratory and critical care medicine","volume":" ","pages":"594-611"},"PeriodicalIF":2.3000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seminars in respiratory and critical care medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1055/s-0043-1770061","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/4 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CRITICAL CARE MEDICINE","Score":null,"Total":0}
引用次数: 0

Abstract

This article provides an overview of the journey of inspired oxygen after its uptake across the alveolar-capillary interface, and the interplay among tissue perfusion, diffusion, and cellular respiration in the transport and utilization of oxygen. The critical interactions between oxygen and its facilitative carriers (hemoglobin in red blood cells and myoglobin in muscle cells), and with other respiratory and vasoactive molecules (carbon dioxide, nitric oxide, and carbon monoxide), are emphasized to illustrate how this versatile system dynamically optimizes regional convective transport and diffusive gas exchange. The rates of reciprocal gas exchange in the lung and the periphery must be well-matched and sufficient for meeting the range of energy demands from rest to maximal stress but not excessive as to become toxic. The mobile red blood cells play a vital role in matching tissue perfusion and gas exchange by dynamically regulating the controlled uptake of oxygen and communicating regional metabolic signals across different organs. Intracellular oxygen diffusion and facilitation via myoglobin into the mitochondria, and utilization via electron transport chain and oxidative phosphorylation, are summarized. Physiological and pathophysiological adaptations are briefly described. Dysfunction of any component across this integrated system affects all other components and elicits corresponding structural and functional adaptation aimed at matching the capacities across the entire system and restoring equilibrium under normal and pathological conditions.

组织灌注和扩散与细胞呼吸:氧气的运输和利用。
本文概述了吸入氧气通过肺泡-毛细血管界面吸收后的旅程,以及组织灌注、扩散和细胞呼吸在氧气运输和利用中的相互作用。强调了氧气及其促进性载体(红细胞中的血红蛋白和肌肉细胞中的肌红蛋白)以及其他呼吸和血管活性分子(二氧化碳、一氧化氮和一氧化碳)之间的关键相互作用,以说明这种多功能系统如何动态优化区域对流传输和扩散气体交换。肺和外周的相互气体交换速率必须很好地匹配,并且足以满足从休息到最大压力的能量需求范围,但不能过度到有毒。可移动的红细胞通过动态调节受控的氧气摄取和在不同器官之间传递区域代谢信号,在匹配组织灌注和气体交换方面发挥着至关重要的作用。综述了通过肌红蛋白向线粒体的细胞内氧扩散和促进,以及通过电子传递链和氧化磷酸化的利用。简要介绍了生理和病理生理适应。该集成系统中任何组件的功能障碍都会影响所有其他组件,并引发相应的结构和功能适应,旨在匹配整个系统的能力,并在正常和病理条件下恢复平衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.10
自引率
0.00%
发文量
87
审稿时长
6-12 weeks
期刊介绍: The journal focuses on new diagnostic and therapeutic procedures, laboratory studies, genetic breakthroughs, pathology, clinical features and management as related to such areas as asthma and other lung diseases, critical care management, cystic fibrosis, lung and heart transplantation, pulmonary pathogens, and pleural disease as well as many other related disorders.The journal focuses on new diagnostic and therapeutic procedures, laboratory studies, genetic breakthroughs, pathology, clinical features and management as related to such areas as asthma and other lung diseases, critical care management, cystic fibrosis, lung and heart transplantation, pulmonary pathogens, and pleural disease as well as many other related disorders.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信