Daylana P Silva, Matheus Kury, Camila S S Coelho, Mayara Dos S Noronha, Beatriz de O Medeiros, Carolina B André, Cinthia P M Tabchoury, Vanessa Cavalli
{"title":"The potential of conventional and bulk-fill bioactive composites to inhibit the development of caries lesions around restorations.","authors":"Daylana P Silva, Matheus Kury, Camila S S Coelho, Mayara Dos S Noronha, Beatriz de O Medeiros, Carolina B André, Cinthia P M Tabchoury, Vanessa Cavalli","doi":"","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To determine caries inhibition potential of conventional and bulk-fill bioactive composites around restorations.</p><p><strong>Methods: </strong>Enamel and dentin blocks were prepared using a diamond saw under water irrigation, finished (SiC, 600- and 800-grit) and polished (SiC 1,200, final polish= 0.2 μm). Blocks were then selected through enamel surface microhardness, and enamel and dentin standard cavities were restored (n=10/group) with conventional bioactive composite (Beautifil II, BTF), bulk-fill bioactive composite (Activa BioACTIVE, ACT), glass-ionomer cement (Ionofil Plus, ION), conventional composite (GrandioSO, GSO), and bulk-fill composite (Admira Fusion X-TRA, ADM). Afterwards, the blocks were subjected to pH cycling: 4 hours in demineralization and 20 hours in remineralization solutions for 7 days, before being cut in the middle. One half was used to calculate the carious lesion area (ΔS) using values obtained by cross-sectional microhardness (CSMH) testing. The other half was submitted to polarized light microscopy (PLM) and scanning electron microscopy (SEM). The % of internal gap formation (GAP) of restorations' replicas were analyzed under SEM. Data were analyzed by ANOVA and Tukey test (α= 5%).</p><p><strong>Results: </strong>In terms of CSMH, ION group exhibited the lowest ΔS values, with no significant difference to ADM. The composites BTF and ACT were similar to each other (P< 0.05) and to their negative controls (GSO and ADM), respectively. ION showed lower caries formation under PLM, whereas the GSO group presented a greater demineralized area. ION presented the highest % of internal GAP formation. Bioactive composites (BTF and ACT) were similar to their corresponding conventional ones (GSO and ADM) in terms of GAP formation.</p><p><strong>Clinical significance: </strong>The glass-ionomer cement was more effective in inhibiting the formation of caries lesions around restorations. Because of the glass-ionomer cement's limited application in high load-bearing areas, the conventional bioactive composite would be a promising clinical choice.</p>","PeriodicalId":7538,"journal":{"name":"American journal of dentistry","volume":"36 3","pages":"136-142"},"PeriodicalIF":0.9000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of dentistry","FirstCategoryId":"3","ListUrlMain":"","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: To determine caries inhibition potential of conventional and bulk-fill bioactive composites around restorations.
Methods: Enamel and dentin blocks were prepared using a diamond saw under water irrigation, finished (SiC, 600- and 800-grit) and polished (SiC 1,200, final polish= 0.2 μm). Blocks were then selected through enamel surface microhardness, and enamel and dentin standard cavities were restored (n=10/group) with conventional bioactive composite (Beautifil II, BTF), bulk-fill bioactive composite (Activa BioACTIVE, ACT), glass-ionomer cement (Ionofil Plus, ION), conventional composite (GrandioSO, GSO), and bulk-fill composite (Admira Fusion X-TRA, ADM). Afterwards, the blocks were subjected to pH cycling: 4 hours in demineralization and 20 hours in remineralization solutions for 7 days, before being cut in the middle. One half was used to calculate the carious lesion area (ΔS) using values obtained by cross-sectional microhardness (CSMH) testing. The other half was submitted to polarized light microscopy (PLM) and scanning electron microscopy (SEM). The % of internal gap formation (GAP) of restorations' replicas were analyzed under SEM. Data were analyzed by ANOVA and Tukey test (α= 5%).
Results: In terms of CSMH, ION group exhibited the lowest ΔS values, with no significant difference to ADM. The composites BTF and ACT were similar to each other (P< 0.05) and to their negative controls (GSO and ADM), respectively. ION showed lower caries formation under PLM, whereas the GSO group presented a greater demineralized area. ION presented the highest % of internal GAP formation. Bioactive composites (BTF and ACT) were similar to their corresponding conventional ones (GSO and ADM) in terms of GAP formation.
Clinical significance: The glass-ionomer cement was more effective in inhibiting the formation of caries lesions around restorations. Because of the glass-ionomer cement's limited application in high load-bearing areas, the conventional bioactive composite would be a promising clinical choice.
期刊介绍:
The American Journal of Dentistry, published by Mosher & Linder, Inc., provides peer-reviewed scientific articles with clinical significance for the general dental practitioner.