{"title":"Active fault tolerant deep brain stimulator for epilepsy using deep neural network.","authors":"Nambi Narayanan Senthilvelmurugan, Sutha Subbian","doi":"10.1515/bmt-2021-0302","DOIUrl":null,"url":null,"abstract":"<p><p>Millions of people around the world are affected by different kinds of epileptic seizures. A deep brain stimulator is now claimed to be one of the most promising tools to control severe epileptic seizures. The present study proposes Hodgkin-Huxley (HH) model-based Active Fault Tolerant Deep Brain Stimulator (AFTDBS) for brain neurons to suppress epileptic seizures against ion channel conductance variations using a Deep Neural Network (DNN). The AFTDBS contains the following three modules: (i) Detection of epileptic seizures using black box classifiers such as Support Vector Machine (SVM) and K-Nearest Neighbor (KNN), (ii) Prediction of ion channels conductance variations using Long Short-Term Memory (LSTM), and (iii) Development of Reconfigurable Deep Brain Stimulator (RDBS) to control epileptic spikes using Proportional Integral (PI) Controller and Model Predictive Controller (MPC). Initially, the synthetic data were collected from the HH model by varying ion channel conductance. Then, the seizure was classified into four groups namely, normal and epileptic due to variations in sodium ion-channel conductance, potassium ion-channel conductance, and both sodium and potassium ion-channel conductance. In the present work, current controlled deep brain stimulators were designed for epileptic suppression. Finally, the closed-loop performances and stability of the proposed control schemes were analyzed. The simulation results demonstrated the efficacy of the proposed DNN-based AFTDBS.</p>","PeriodicalId":8900,"journal":{"name":"Biomedical Engineering / Biomedizinische Technik","volume":"68 4","pages":"373-392"},"PeriodicalIF":1.3000,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Engineering / Biomedizinische Technik","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/bmt-2021-0302","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Millions of people around the world are affected by different kinds of epileptic seizures. A deep brain stimulator is now claimed to be one of the most promising tools to control severe epileptic seizures. The present study proposes Hodgkin-Huxley (HH) model-based Active Fault Tolerant Deep Brain Stimulator (AFTDBS) for brain neurons to suppress epileptic seizures against ion channel conductance variations using a Deep Neural Network (DNN). The AFTDBS contains the following three modules: (i) Detection of epileptic seizures using black box classifiers such as Support Vector Machine (SVM) and K-Nearest Neighbor (KNN), (ii) Prediction of ion channels conductance variations using Long Short-Term Memory (LSTM), and (iii) Development of Reconfigurable Deep Brain Stimulator (RDBS) to control epileptic spikes using Proportional Integral (PI) Controller and Model Predictive Controller (MPC). Initially, the synthetic data were collected from the HH model by varying ion channel conductance. Then, the seizure was classified into four groups namely, normal and epileptic due to variations in sodium ion-channel conductance, potassium ion-channel conductance, and both sodium and potassium ion-channel conductance. In the present work, current controlled deep brain stimulators were designed for epileptic suppression. Finally, the closed-loop performances and stability of the proposed control schemes were analyzed. The simulation results demonstrated the efficacy of the proposed DNN-based AFTDBS.
期刊介绍:
Biomedical Engineering / Biomedizinische Technik (BMT) is a high-quality forum for the exchange of knowledge in the fields of biomedical engineering, medical information technology and biotechnology/bioengineering. As an established journal with a tradition of more than 60 years, BMT addresses engineers, natural scientists, and clinicians working in research, industry, or clinical practice.