{"title":"Praeruptorin A inhibits the activation of NF-κB pathway and the expressions of inflammatory factors in poly (I:C)-induced RAW264.7 cells","authors":"Jiayan Hu, Roujun Liu, Zhouxin Yang, Xinyu Pan, Yuanjing Li, Yanghui Gong, Dongyang Guo","doi":"10.1111/cbdd.14310","DOIUrl":null,"url":null,"abstract":"<p>Praeruptorin A (PA), a natural coumarin compound, has significant anti-inflammatory effects. In this study, we evaluate the anti-inflammatory effect of PA on RAW 264.7 mouse macrophages induced by Polyinosinic acid-polycytidylic acid (poly (I:C)). RAW 264.7 mouse macrophages induced by poly (I:C) were treated with or without PA, the viability of which was determined to screen working solution of PA. RNA-sequencing was applied to analyze the differentially expressed genes (DEGs). Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were carried out. The expressions of interleukin (IL)-1β, heme oxygenase 1 (HMOX1), prostaglandin-endoperoxide synthase 2 (PTGS2), ATP binding cassette subfamily A member 1 (Abca1) and NF-κB-related proteins were measured by enzyme-linked immunosorbent assay (ELISA), quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blot. As a result, PA at 1, 2, 3, 4 and 5 μM slightly affected cell viability, while PA at 6 and 7 μM significantly inhibited cell viability. GO and KEGG analysis results revealed that DEGs were mainly enriched in the pathways related to inflammatory signaling. Through further analysis, we obtained five possible targets of PA, and verified that PA inhibited the expressions of IL-1β, HMOX1, PTGS2 and Abca1 as well as the activation of NF-κB pathway in poly (I:C)-induced RAW264.7 cells. To summarize, PA may inhibit expressions of the inflammation-related genes in poly (I:C)-induced RAW264.7 cells, which demonstrates its potential as a drug against virus related diseases.</p>","PeriodicalId":93931,"journal":{"name":"Chemical biology & drug design","volume":"102 5","pages":"1110-1120"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical biology & drug design","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cbdd.14310","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Praeruptorin A (PA), a natural coumarin compound, has significant anti-inflammatory effects. In this study, we evaluate the anti-inflammatory effect of PA on RAW 264.7 mouse macrophages induced by Polyinosinic acid-polycytidylic acid (poly (I:C)). RAW 264.7 mouse macrophages induced by poly (I:C) were treated with or without PA, the viability of which was determined to screen working solution of PA. RNA-sequencing was applied to analyze the differentially expressed genes (DEGs). Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were carried out. The expressions of interleukin (IL)-1β, heme oxygenase 1 (HMOX1), prostaglandin-endoperoxide synthase 2 (PTGS2), ATP binding cassette subfamily A member 1 (Abca1) and NF-κB-related proteins were measured by enzyme-linked immunosorbent assay (ELISA), quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blot. As a result, PA at 1, 2, 3, 4 and 5 μM slightly affected cell viability, while PA at 6 and 7 μM significantly inhibited cell viability. GO and KEGG analysis results revealed that DEGs were mainly enriched in the pathways related to inflammatory signaling. Through further analysis, we obtained five possible targets of PA, and verified that PA inhibited the expressions of IL-1β, HMOX1, PTGS2 and Abca1 as well as the activation of NF-κB pathway in poly (I:C)-induced RAW264.7 cells. To summarize, PA may inhibit expressions of the inflammation-related genes in poly (I:C)-induced RAW264.7 cells, which demonstrates its potential as a drug against virus related diseases.