Design and Evaluation of a Handheld Robotic Device for Peripheral Catheterization.

IF 0.8 4区 医学 Q4 ENGINEERING, BIOMEDICAL
Josh Leipheimer, Max Balter, Alvin Chen, Martin Yarmush
{"title":"Design and Evaluation of a Handheld Robotic Device for Peripheral Catheterization.","authors":"Josh Leipheimer, Max Balter, Alvin Chen, Martin Yarmush","doi":"10.1115/1.4053688","DOIUrl":null,"url":null,"abstract":"<p><p>Medical robots provide enhanced dexterity, vision, and safety for a broad range of procedures. In this article, we present a handheld, robotic device capable of performing peripheral catheter insertions with high accuracy and repeatability. The device utilizes a combination of ultrasound imaging, miniaturized robotics, and machine learning to safely and efficiently introduce a catheter sheath into a peripheral blood vessel. Here, we present the mechanical design and experimental validation of the device, known as VeniBot. Additionally, we present results on our ultrasound deep learning algorithm for vessel segmentation, and performance on tissue-mimicking phantom models that simulate difficult peripheral catheter placement. Overall, the device achieved first-attempt success rates of 97 ± 4% for vessel punctures and 89 ± 7% for sheath cannulations on the tissue mimicking models (n = 240). The results from these studies demonstrate the viability of a handheld device for performing semi-automated peripheral catheterization. In the future, the use of this device has the potential to improve clinical workflow and reduce patient discomfort by assuring a safe and efficient procedure.</p>","PeriodicalId":49305,"journal":{"name":"Journal of Medical Devices-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8905093/pdf/med-21-1191_021015.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Devices-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4053688","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/3/2 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Medical robots provide enhanced dexterity, vision, and safety for a broad range of procedures. In this article, we present a handheld, robotic device capable of performing peripheral catheter insertions with high accuracy and repeatability. The device utilizes a combination of ultrasound imaging, miniaturized robotics, and machine learning to safely and efficiently introduce a catheter sheath into a peripheral blood vessel. Here, we present the mechanical design and experimental validation of the device, known as VeniBot. Additionally, we present results on our ultrasound deep learning algorithm for vessel segmentation, and performance on tissue-mimicking phantom models that simulate difficult peripheral catheter placement. Overall, the device achieved first-attempt success rates of 97 ± 4% for vessel punctures and 89 ± 7% for sheath cannulations on the tissue mimicking models (n = 240). The results from these studies demonstrate the viability of a handheld device for performing semi-automated peripheral catheterization. In the future, the use of this device has the potential to improve clinical workflow and reduce patient discomfort by assuring a safe and efficient procedure.

Abstract Image

用于外周导管插入术的手持机器人设备的设计与评估。
医用机器人为各种手术提供了更高的灵活性、视觉和安全性。在这篇文章中,我们介绍了一种手持式机器人设备,它能够以高精度和可重复性进行外周导管插入。该设备结合使用了超声成像、微型机器人技术和机器学习技术,能够安全高效地将导管鞘导入外周血管。在此,我们将介绍该设备(称为 VeniBot)的机械设计和实验验证。此外,我们还介绍了用于血管分割的超声深度学习算法的结果,以及在模拟困难外周导管置入的组织仿真模型上的表现。总体而言,该设备在组织模拟模型(n = 240)上的血管穿刺首次尝试成功率为 97 ± 4%,鞘管插管首次尝试成功率为 89 ± 7%。这些研究结果证明了手持式设备在进行半自动外周导管插入术方面的可行性。未来,该设备的使用有望改善临床工作流程,并通过确保安全高效的手术减少患者的不适感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.80
自引率
11.10%
发文量
56
审稿时长
6-12 weeks
期刊介绍: The Journal of Medical Devices presents papers on medical devices that improve diagnostic, interventional and therapeutic treatments focusing on applied research and the development of new medical devices or instrumentation. It provides special coverage of novel devices that allow new surgical strategies, new methods of drug delivery, or possible reductions in the complexity, cost, or adverse results of health care. The Design Innovation category features papers focusing on novel devices, including papers with limited clinical or engineering results. The Medical Device News section provides coverage of advances, trends, and events.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信