Deep Learning Integration of Chest Computed Tomography Imaging and Gene Expression Identifies Novel Aspects of COPD.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Junxiang Chen, Zhonghui Xu, Li Sun, Ke Yu, Craig P Hersh, Adel Boueiz, John E Hokanson, Frank C Sciurba, Edwin K Silverman, Peter J Castaldi, Kayhan Batmanghelich
{"title":"Deep Learning Integration of Chest Computed Tomography Imaging and Gene Expression Identifies Novel Aspects of COPD.","authors":"Junxiang Chen, Zhonghui Xu, Li Sun, Ke Yu, Craig P Hersh, Adel Boueiz, John E Hokanson, Frank C Sciurba, Edwin K Silverman, Peter J Castaldi, Kayhan Batmanghelich","doi":"10.15326/jcopdf.2023.0399","DOIUrl":null,"url":null,"abstract":"<p><strong>Rationale: </strong>Chronic obstructive pulmonary disease (COPD) is characterized by pathologic changes in the airways, lung parenchyma, and persistent inflammation, but the links between lung structural changes and blood transcriptome patterns have not been fully described.</p><p><strong>Objections: </strong>The objective of this study was to identify novel relationships between lung structural changes measured by chest computed tomography (CT) and blood transcriptome patterns measured by blood RNA sequencing (RNA-seq).</p><p><strong>Methods: </strong>CT scan images and blood RNA-seq gene expression from 1223 participants in the COPD Genetic Epidemiology (COPDGene<sup>®</sup>) study were jointly analyzed using deep learning to identify shared aspects of inflammation and lung structural changes that we labeled image-expression axes (IEAs). We related IEAs to COPD-related measurements and prospective health outcomes through regression and Cox proportional hazards models and tested them for biological pathway enrichment.</p><p><strong>Results: </strong>We identified 2 distinct IEAs: IEA<sub>emph</sub> which captures an emphysema-predominant process with a strong positive correlation to CT emphysema and a negative correlation to forced expiratory volume in 1 second and body mass index (BMI); and IEA<sub>airway</sub> which captures an airway-predominant process with a positive correlation to BMI and airway wall thickness and a negative correlation to emphysema. Pathway enrichment analysis identified 29 and 13 pathways significantly associated with IEA<sub>emph</sub> and IEA<sub>airway</sub>, respectively (adjusted <i>p</i><0.001).</p><p><strong>Conclusions: </strong>Integration of CT scans and blood RNA-seq data identified 2 IEAs that capture distinct inflammatory processes associated with emphysema and airway-predominant COPD.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10699487/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.15326/jcopdf.2023.0399","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 1

Abstract

Rationale: Chronic obstructive pulmonary disease (COPD) is characterized by pathologic changes in the airways, lung parenchyma, and persistent inflammation, but the links between lung structural changes and blood transcriptome patterns have not been fully described.

Objections: The objective of this study was to identify novel relationships between lung structural changes measured by chest computed tomography (CT) and blood transcriptome patterns measured by blood RNA sequencing (RNA-seq).

Methods: CT scan images and blood RNA-seq gene expression from 1223 participants in the COPD Genetic Epidemiology (COPDGene®) study were jointly analyzed using deep learning to identify shared aspects of inflammation and lung structural changes that we labeled image-expression axes (IEAs). We related IEAs to COPD-related measurements and prospective health outcomes through regression and Cox proportional hazards models and tested them for biological pathway enrichment.

Results: We identified 2 distinct IEAs: IEAemph which captures an emphysema-predominant process with a strong positive correlation to CT emphysema and a negative correlation to forced expiratory volume in 1 second and body mass index (BMI); and IEAairway which captures an airway-predominant process with a positive correlation to BMI and airway wall thickness and a negative correlation to emphysema. Pathway enrichment analysis identified 29 and 13 pathways significantly associated with IEAemph and IEAairway, respectively (adjusted p<0.001).

Conclusions: Integration of CT scans and blood RNA-seq data identified 2 IEAs that capture distinct inflammatory processes associated with emphysema and airway-predominant COPD.

胸部计算机断层扫描成像和基因表达的深度学习集成识别COPD的新方面。
理由:慢性阻塞性肺病(COPD)的特征是气道、肺实质的病理变化和持续的炎症,但肺部结构变化和血液转录组模式之间的联系尚未得到充分描述。目的:确定胸部计算机断层扫描(CT)测量的肺部结构变化与血液RNA测序测量的血液转录组模式之间的新关系。方法:使用深度学习对COPDGene研究中1223名受试者的CT扫描图像和血液RNA-seq基因表达进行联合分析,以确定炎症和肺部结构变化的共同方面,我们称之为图像表达轴(IEAs)。我们通过回归和Cox比例风险模型将IEA与COPD相关测量和预期健康结果联系起来,并对其进行生物途径富集测试。结果:我们确定了两个不同的IEA:IEAemph捕捉到肺气肿的主要过程,与CT肺气肿呈强正相关,与FEV1和体重指数(BMI)呈负相关;IEAairway捕捉到了一个气道主导过程,与BMI和气道壁厚呈正相关,与肺气肿呈负相关。通路富集分析分别确定了29条和13条与IEAemph和IEAairway显著相关的通路(调整后的结论:CT扫描和血液RNA-seq数据的整合确定了两个捕捉与肺气肿和气道占主导地位的COPD相关的不同炎症过程的IEA。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信